ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The Frisch-Peierls memorandum: A seminal document of nuclear history
The Manhattan Project is usually considered to have been initiated with Albert Einstein’s letter to President Franklin Roosevelt in October 1939. However, a lesser-known document that was just as impactful on wartime nuclear history was the so-called Frisch-Peierls memorandum. Prepared by two refugee physicists at the University of Birmingham in Britain in early 1940, this manuscript was the first technical description of nuclear weapons and their military, strategic, and ethical implications to reach high-level government officials on either side of the Atlantic. The memorandum triggered the initiation of the British wartime nuclear program, which later merged with the Manhattan Engineer District.
Diogo R. Ferreira, Pedro J. Carvalho, Carlo Sozzi, Peter J. Lomas, JET Contributors
Fusion Science and Technology | Volume 76 | Number 8 | November 2020 | Pages 901-911
Technical Paper | doi.org/10.1080/15361055.2020.1820749
Articles are hosted by Taylor and Francis Online.
The JET baseline scenario is being developed to achieve high fusion performance and sustained fusion power. However, with higher plasma current and higher input power, an increase in pulse disruptivity is being observed. Although there is a wide range of possible disruption causes, the present disruptions seem to be closely related to radiative phenomena such as impurity accumulation, core radiation, and radiative collapse. In this work, we focus on bolometer tomography to reconstruct the plasma radiation profile, and on top of it, we apply anomaly detection to identify the radiation patterns that precede major disruptions. The approach makes extensive use of machine learning. First, we train a surrogate model for plasma tomography based on matrix multiplication, which provides a fast method to compute the plasma radiation profiles across the full extent of any given pulse. Then, we train a variational autoencoder to reproduce the radiation profiles by encoding them into a latent distribution and subsequently decoding them. As an anomaly detector, the variational autoencoder struggles to reproduce unusual behaviors that include not only the actual disruptions but their precursors as well. These precursors are identified based on an analysis of the anomaly score across all baseline pulses in two recent campaigns at JET.