ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Argonne research aims to improve nuclear fuel recycling and metal recovery
Servis
Scientists at Argonne National Laboratory are investigating a used nuclear fuel recycling technology that could lead to a scaled-down and more efficient approach to metal recovery, according to a recent news article from the lab. The research, led by Argonne radiochemist Anna Servis with funding from the Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-E), could have an impact beyond the nuclear fuel cycle and improve other high-value metal processing, such as rare earth recovery, according to Argonne.
The research: Servis’s work is being carried out under ARPA-E’s CURIE (Converting UNF Radioisotopes Into Energy) program. The specific project—Radioisotope Capture Intensification Using Rotating Packed Bed Contactors—started in 2023 and is scheduled to end in January 2026.
Shiping Wei, Xinyu Sun, Haixia Wang, Jiangtao Jia, Zhibin Chen, Shichao Zhang
Fusion Science and Technology | Volume 76 | Number 7 | October 2020 | Pages 869-877
Technical Note | doi.org/10.1080/15361055.2020.1777668
Articles are hosted by Taylor and Francis Online.
The China Fusion Engineering Test Reactor (CFETR) tritium plant has to deal with a larger amount of tritium than ITER. The tritium source term is one of the key issues for safety assessment and operation of the CFETR. In this technical note, the preliminary estimation and safety analysis of the tritium source term for the CFETR tritium plant in normal operation have been performed on compliance with the ongoing plant design. The estimation method adopted is the system dynamics simulation performed by the Tritium Analysis program for fusion System developed by the Frontier Development of Science (FDS) team. The preliminary analysis results show that the storage and delivery system still stores the most amount of tritium. Until after 1 month of operation the plasma-facing material needs to be cleaned in the CFETR corresponding to the 600-g limit. Tritium losses, such as tritium permeation into the coolant and release to building rooms, are of a much smaller amount than tritium decay in the 2-week operation. It is worth noting that the tritium concentration somewhere in the tritium plant can be slightly more than 1 DAC (derived air concentration). These preliminary analysis results could provide some valuable references for the safety design and tritium management of the CFETR tritium plant.