ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
D. R. Harding, M. D. Wittman, N. P. Redden, D. H. Edgell, J. Ulreich
Fusion Science and Technology | Volume 76 | Number 7 | October 2020 | Pages 814-830
Technical Paper | doi.org/10.1080/15361055.2020.1812990
Articles are hosted by Taylor and Francis Online.
Shadowgraphy and X-ray phase contrast (XPC) imaging are two techniques that are used for characterizing the deuterium-tritium ice layer in inertial confinement fusion targets. Each technique has limitations that affect how accurately they can characterize small crystalline defects and measure the ice thickness nonuniformities that may be only a few micrometers in height. The concern is that shadowgraphy may be overly sensitive to the shape and depth of defects in the ice surface and insufficiently sensitive to the shape of longer wavelength roughness, while XPC may be too insensitive to defects in the ice surface.
Multiple ice layers with different thicknesses (40 to 63 μm), thickness uniformities (peak-to-valley variations that range from < 2 to 12 μm), and crystal defects were analyzed using shadowgraphy and XPC techniques. The results from each method agree when the ice layer is uniformly thick and the crystal lacks defects. That agreement worsens as the number of defects in the surface of the ice layer increases, and the roughness (that is determined from a shadowgram image of the target’s limb) becomes greater than can be justified by the number of defects that are seen in the target’s front and rear surfaces. The XPC technique is considerably less sensitive to surface defects, in part because of the poorer dynamic range and image resolution compared to shadowgraphy. Localized regions of the ice layer that are thicker or thinner than the average thickness of the layer are reported by shadowgraphy to be smaller in height and footprint (by up to 30%) than by XPC. As a result, the two techniques report different ice layer thicknesses that can vary by up to 10%. Shadowgraphy, which results from two caustics that trace different paths through the target, and in theory, image the same ice/vapor surface (but reflect from either the vapor or ice side of the interface), did not consistently characterize the size or shape of ice features to be the same magnitude. The XPC technique provides the best assessment of low-mode (l < 7) roughness in the ice layer. Shadowgraphy results using the strongest caustic is best for detecting the presence of grooves in the ice, although not for quantifying the size of them. If multiple grooves are present, it is best to discard and reform the ice layer.