ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
H. H. Lee, J. K Lee, W. H. Ko
Fusion Science and Technology | Volume 76 | Number 7 | October 2020 | Pages 787-794
Technical Paper | doi.org/10.1080/15361055.2020.1790712
Articles are hosted by Taylor and Francis Online.
Charge exchange spectroscopy has been widely used in fusion devices to measure ion temperature, and toroidal and poloidal flow velocities of plasma. For local measurement, especially in the core region of the plasma, the spectrum emitted by the charge exchange reaction between the main plasma ions or impurity ions and the intentionally injected neutral beam should be analyzed so that parameters can be accurately deduced. Since the line-integrated spectrum signal through the line of sight of the diagnostic optics usually contains an unnecessary overlapped spectrum signal, referred to as the background signal, that typically originates from the plasma boundary region, a beam modulation technique is commonly applied to separate the background signal from the measured spectrum. Recently, it has been demonstrated in the KSTAR tokamak that a two-Gaussian fitting (TGF) method can be applied to analyze the spectrum and deduce plasma ion temperature and toroidal rotation velocity profiles of reasonable accuracy without beam modulation. It has been realized that the measurement result by the TGF method can be alternatively used to investigate plasma transport dynamics when beam modulation is prohibited to avoid any possible disturbance inhibiting robust plasma control and stable operation of the neutral beam injection system.