ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Joint NEA project performs high-burnup test
An article in the OECD Nuclear Energy Agency’s July news bulletin noted that a first test has been completed for the High Burnup Experiments in Reactivity Initiated Accident (HERA) project. The project aim is to understand the performance of light water reactor fuel at high burnup under reactivity-initiated accidents (RIA).
H. H. Lee, J. K Lee, W. H. Ko
Fusion Science and Technology | Volume 76 | Number 7 | October 2020 | Pages 787-794
Technical Paper | doi.org/10.1080/15361055.2020.1790712
Articles are hosted by Taylor and Francis Online.
Charge exchange spectroscopy has been widely used in fusion devices to measure ion temperature, and toroidal and poloidal flow velocities of plasma. For local measurement, especially in the core region of the plasma, the spectrum emitted by the charge exchange reaction between the main plasma ions or impurity ions and the intentionally injected neutral beam should be analyzed so that parameters can be accurately deduced. Since the line-integrated spectrum signal through the line of sight of the diagnostic optics usually contains an unnecessary overlapped spectrum signal, referred to as the background signal, that typically originates from the plasma boundary region, a beam modulation technique is commonly applied to separate the background signal from the measured spectrum. Recently, it has been demonstrated in the KSTAR tokamak that a two-Gaussian fitting (TGF) method can be applied to analyze the spectrum and deduce plasma ion temperature and toroidal rotation velocity profiles of reasonable accuracy without beam modulation. It has been realized that the measurement result by the TGF method can be alternatively used to investigate plasma transport dynamics when beam modulation is prohibited to avoid any possible disturbance inhibiting robust plasma control and stable operation of the neutral beam injection system.