ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
State legislation: Delaware delving into nuclear energy possibilities
A bill that would create a nuclear energy task force in Delaware has passed the state Senate and is now being considered in the House of Representatives.
J. A. Hoekzema
Fusion Science and Technology | Volume 45 | Number 2 | March 2004 | Pages 211-216
Technical Paper | Plasma and Fusion Energy Physics - Plasma Heating and Current Drive | doi.org/10.13182/FST04-A485
Articles are hosted by Taylor and Francis Online.
An introduction is given to plasma heating and current drive with electromagnetic waves in the electron cyclotron range of frequencies, with emphasis on application in tokamak plasmas. Propagation and absorption of these waves is generally well described by linear theory, a short overview of which is given. Electron cyclotron absorption is limited to regions of the plasma where the gyromotion of electrons is in resonance with the wave frequency and can be well localised, even in smaller experiments. Apart from being able to provide global heating and non-inductive current drive, ECRH and ECCD are therefore important tools to study and manipulate locally instabilities in the plasma which are electron temperature gradient or current driven. Important potential control applications in a reactor grade plasma include mode stabilisation to prevent disruptions, transport manipulation (e.g. to maintain burn) and correction of the bootstrap current profile. The use of EC waves in major tokamak experiments has in the past been restricted due to the lack of suitable sources. These sources are, however, now rapidly becoming available.