ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Shashi Kant Verma, Samiran Shanti Mukherjee, Ranjana Gangradey, R. Srinivasan, Vishal Gupta, Paresh Panchal, Pratik Nayak
Fusion Science and Technology | Volume 76 | Number 6 | August 2020 | Pages 770-785
Technical Note | doi.org/10.1080/15361055.2020.1777674
Articles are hosted by Taylor and Francis Online.
For the last 15 to 20 years, substantial advancement has been achieved globally in the field of pellet injector technology (PIT). Nuclear fusion is a method for producing high-energy neutrons, alpha particles, and an enormous amount of energy with the help of thermonuclear reaction of hydrogen isotopes. The way of producing this huge energy source is similar to that of the sun’s generated energy. This type of energy does not produce greenhouse gases or a high-level radioactive surplus. Solid hydrogen is used as a fuel in a fusion reactor in the form of pellets of different diameters and lengths. These pellets are produced by a pellet injector. In the sophisticated fueling system, these pellets are continuously produced with the help of a twin-screw extruder (TSE) and cooled by more than one cryocooler or liquid helium. Each pellet injection system has its pros and cons. We have identified different injection criteria for different types of injectors. Higher-density, continuous injection with high reliability is the major constraint of a future pellet injection system such as the Gifford-McMahon cryocooler-based TSE. In the past, limited innovative applications for PIT were established and used effectively in fusion experiments. At the present time, an innovative cryogenic-based extrusion system is being designed to meet the different injection criteria. This technical notepresents the progress of eminent activities, discusses some of the best models as developed by Fisher and Arumugam et al., and highlights recent progress. Gray areas such as non-Newtonian behavior of solid H2 with thermodynamics analysis are also discussed as well as associated challenges with recent key developments in the field of PIT.