ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Bipartisan commission report urges national fusion strategy
In the report Fusion Forward: Powering America’s Future issued earlier this month by the Special Competitive Studies Project’s (SCSP) Commission on the Scaling of Fusion Energy, it warns that the United States is on the verge of losing the fusion power race to China.
Noting that China has invested at least $6.5 billion in its fusion enterprise since 2023, almost three times the funding received by the U.S. Department of Energy’s fusion program over the same period, the commission report urges the U.S. government to prioritize the rapid commercialization of fusion energy to secure U.S. national security and restore American energy leadership.
SCSP is a nonpartisan, nonprofit initiative making recommendations to strengthen America’s long-term competitiveness in emerging technologies. Launched in fall 2024, the 13-member commission is led by Sens. Maria Cantwell (D., Wash.) and Jim Risch (R., Idaho), along with SCSP president and commission co-chair Ylli Bajraktari.
K.-J. Boehm, Y. Ayzman, R. Blake, A. Garcia, K. Sequoia, S. Sundram, W. Sweet
Fusion Science and Technology | Volume 76 | Number 6 | August 2020 | Pages 749-757
Technical Paper | doi.org/10.1080/15361055.2020.1777673
Articles are hosted by Taylor and Francis Online.
Small shells, approximately 2 mm in diameter, made from Poly(α-methylstyrene) (PAMS) are used as mandrels in the production of glow discharge polymer capsules located at the center of inertial confinement fusion experiments. The visual inspection process of microscope images of these shell mandrels, including detection of micron-sized defects on the shell surface as well as the handling and sorting, is a very labor-intensive, repetitive, and highly subjective process that stands to benefit greatly from automation.
As part of an effort to decrease the number of labor hours spent in capsule handling, inspection, and metrology, the development of robotic systems was presented in a paper by Carlson et al., “Automation in Target Fabrication” [Fusion Sci. Technol., Vol. 70, p. 274 (2016)]. The current work expands the automated image acquisition systems developed previously and adds the use of convolutional neural networks to select capsules best suited for use in the downstream production process. Through the use of these machine learning algorithms, the selection process becomes robust, repeatable, and operator independent. As an added benefit the system developed as part of this work is able to provide defect statistics on entire shell batches and feed this information upstream to the production team.