ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
K.-J. Boehm, Y. Ayzman, R. Blake, A. Garcia, K. Sequoia, S. Sundram, W. Sweet
Fusion Science and Technology | Volume 76 | Number 6 | August 2020 | Pages 749-757
Technical Paper | doi.org/10.1080/15361055.2020.1777673
Articles are hosted by Taylor and Francis Online.
Small shells, approximately 2 mm in diameter, made from Poly(α-methylstyrene) (PAMS) are used as mandrels in the production of glow discharge polymer capsules located at the center of inertial confinement fusion experiments. The visual inspection process of microscope images of these shell mandrels, including detection of micron-sized defects on the shell surface as well as the handling and sorting, is a very labor-intensive, repetitive, and highly subjective process that stands to benefit greatly from automation.
As part of an effort to decrease the number of labor hours spent in capsule handling, inspection, and metrology, the development of robotic systems was presented in a paper by Carlson et al., “Automation in Target Fabrication” [Fusion Sci. Technol., Vol. 70, p. 274 (2016)]. The current work expands the automated image acquisition systems developed previously and adds the use of convolutional neural networks to select capsules best suited for use in the downstream production process. Through the use of these machine learning algorithms, the selection process becomes robust, repeatable, and operator independent. As an added benefit the system developed as part of this work is able to provide defect statistics on entire shell batches and feed this information upstream to the production team.