ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Jae-Yoo Choi, Masoomeh Ghasemi, Min-Ho Chang, Hyunchul Ju
Fusion Science and Technology | Volume 76 | Number 6 | August 2020 | Pages 739-748
Technical Paper | doi.org/10.1080/15361055.2020.1777672
Articles are hosted by Taylor and Francis Online.
In this study, a three-dimensional transient metal hydride model is applied to two different depleted uranium (DU) bed designs. One bed is designed to contain 1.86 kg DU for a hydrogen isotope storage capacity of 70 g, and it is loaded with copper foam to enhance internal heat transfer. The other bed is designed to contain 5.26 kg DU for a hydrogen isotope storage capacity of 200 g, and it uses copper fins to enhance internal heat transfer. A numerical study is conducted to analyze the dehydriding characteristics of two different DU bed designs. A parallel computing methodology is used to effectively reduce the computational turnaround time involved for full-scale DU bed geometries. The detailed simulation results show the evolution of temperature and hydrogen-to-metal atomic ratio contours at different hydrogen desorption stages and reveal the different DU dehydriding behaviors of the two DU beds. In sum, the present work elucidates the effects of key bed design parameters and helps identify optimal DU bed design strategies to effectively charge and discharge hydrogen isotopes.