ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
S. I. Radwan, S. Abdel Samad, H. El-Khabeary
Fusion Science and Technology | Volume 76 | Number 6 | August 2020 | Pages 710-722
Technical Paper | doi.org/10.1080/15361055.2020.1777669
Articles are hosted by Taylor and Francis Online.
Fusion reactors will require specially engineered structural materials that will simultaneously satisfy the harsh conditions, such as high thermomechanical stresses, high heat loads, and severe radiation damage, without compromising on safety considerations. The simulation of 14.7-MeV protons and 3.6-MeV α-particles irradiation processing using different fusion structural materials, such as graphite, titanium, zirconium, molybdenum, tantalum, and tungsten, was studied. The open-source three-dimensional computer simulation code SRIM (2013 version) was used to determine the protons and α-particles penetrability into the target material as well as the range dependence of the protons and α-particles energies. The protons and α-particles distribution range and their trajectories in the target materials were determined. The effect of the target materials’ atomic mass on the 14.7-MeV protons and 3.6-MeV α-particles penetration range was determined. Also, the phonons and ionization of the target materials induced by these irradiated particles were studied.