ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
S. I. Radwan, S. Abdel Samad, H. El-Khabeary
Fusion Science and Technology | Volume 76 | Number 6 | August 2020 | Pages 710-722
Technical Paper | doi.org/10.1080/15361055.2020.1777669
Articles are hosted by Taylor and Francis Online.
Fusion reactors will require specially engineered structural materials that will simultaneously satisfy the harsh conditions, such as high thermomechanical stresses, high heat loads, and severe radiation damage, without compromising on safety considerations. The simulation of 14.7-MeV protons and 3.6-MeV α-particles irradiation processing using different fusion structural materials, such as graphite, titanium, zirconium, molybdenum, tantalum, and tungsten, was studied. The open-source three-dimensional computer simulation code SRIM (2013 version) was used to determine the protons and α-particles penetrability into the target material as well as the range dependence of the protons and α-particles energies. The protons and α-particles distribution range and their trajectories in the target materials were determined. The effect of the target materials’ atomic mass on the 14.7-MeV protons and 3.6-MeV α-particles penetration range was determined. Also, the phonons and ionization of the target materials induced by these irradiated particles were studied.