ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Argonne research aims to improve nuclear fuel recycling and metal recovery
Servis
Scientists at Argonne National Laboratory are investigating a used nuclear fuel recycling technology that could lead to a scaled-down and more efficient approach to metal recovery, according to a recent news article from the lab. The research, led by Argonne radiochemist Anna Servis with funding from the Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-E), could have an impact beyond the nuclear fuel cycle and improve other high-value metal processing, such as rare earth recovery, according to Argonne.
The research: Servis’s work is being carried out under ARPA-E’s CURIE (Converting UNF Radioisotopes Into Energy) program. The specific project—Radioisotope Capture Intensification Using Rotating Packed Bed Contactors—started in 2023 and is scheduled to end in January 2026.
Franck Bachelet, Sébastien Clouard, Aurélie Lis, Rémi André, Christophe Mathonat
Fusion Science and Technology | Volume 76 | Number 6 | August 2020 | Pages 699-702
Technical Paper | doi.org/10.1080/15361055.2020.1766273
Articles are hosted by Taylor and Francis Online.
The measurement and characterization of tritium, for its monitoring in processes or its accounting in radioactive wastes, can be addressed with nonintrusive and nondestructive methods such as the standardized (American Society for Testing and Materials C1458-16) large-volume calorimetry (LVC) technique. This type of calorimeter is isothermal and measures the heat flow generated by tritiated objects. The heat flow is detected with Peltier sensors. They are strategically located around the tritiated object to measure thermal fluxes in all directions. This method is matrix independent, the typical relative uncertainty is less than 1%, and the duration depends on the thermal conductivity and the volume of the measured object. The tritium quantity is calculated thanks to the tritium-specific power (324 mW/g) assuming that 100% of the measured heat flux comes from tritium.
This technique was applied for measuring tritiated drums or objects with volumes ranging from 1 to 250 L, more particularly, for the so-called LVC1380, which has been codeveloped and copatented by the CEA and KEP Technologies in France for drums bigger than 200 L. The new technology is based on the measurement of a differential heat flux on a measurement cell and a reference concentric cell without using a symmetrical reference cell. This device enables the quantification of tritium inventories in the waste drum, whatever the physical and chemical forms of tritium. The CEA has performed qualification tests of this calorimeter with ghost drums. The CEA now operates the LVC1380, and the first results in a tritium nuclear environment have been obtained with adsorbed tritiated water on zeolite inside molecular sieve traps (MST). This paper presents the measurement capabilities of this new LVC calorimeter and some illustrating results obtained with MST drums.