ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Lei Yue, Chao Chen, Jiamao Li, Chengjian Xiao, Xiulong Xia, Guangming Ran, Xiaolong Fu, Jingwei Hou, Yu Gong, Heyi Wang
Fusion Science and Technology | Volume 76 | Number 5 | July 2020 | Pages 680-689
Technical Paper | doi.org/10.1080/15361055.2020.1766274
Articles are hosted by Taylor and Francis Online.
Palladium membranes have been used for hydrogen purification for a long time due to their infinite selectivity and excellent permeation performance. However, a coexisting impurity gas, like CO, will inhibit the hydrogen permeation flux that results from the concentration polarization (CP) and competitive adsorption inhibition effects. This work aims to investigate the two inhibition effects separately and quantitatively under different temperatures and pressures. Therefore, permeation experiments of H2 (90%)/N2 (10% to 5%)/CO (0% to 5%) mixtures have been carried out at temperatures ranging from 623 to 698 K and H2 partial pressure drops from 30 to 100 kPa. The permeation of H2/N2 is used to study CP because the competitive adsorption of N2 can be ignored. Then, the further H2 flux reduction of xH2/(1-x-z)N2/zCO permeation relative to that of xH2/(1-x)N2 permeation can be attributed to the competitive adsorption of CO. The experimental results show that the CP effect would be enhanced by increasing temperature and pressure, while the CO competitive adsorption effect would be depressed. Meanwhile, the CO inhibition effect generally becomes smaller when the membrane thickness becomes thicker. Based on the results in this work, operation conditions are suggested to be at a higher temperature and higher pressure for a thicker Pd membrane in consideration of increasing the H2 permeation flux and reducing the CO adsorption effect. The experimental and calculation methods used in this work can provide a new way for investigating the inhibition effect on hydrogen permeation caused by other nonpermeable gases like CO2, Ar, or H2O.