ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Robert L. Hirsch, Gerald L. Kulcinski, Doug Chapin, Herman Diekamp
Fusion Science and Technology | Volume 76 | Number 5 | July 2020 | Pages 670-679
doi.org/10.1080/15361055.2020.1766272
Articles are hosted by Taylor and Francis Online.
The Electric Power Research Institute outlined three criteria important for a commercially viable fusion power plant: competitive electric power cost, regulatory simplicity, and public acceptance. In this paper we consider likely U.S. regulatory considerations for deuterium-tritium (D-T) fusion power reactors, relying on existing criteria and past actions by the U.S. Nuclear Regulatory Commission, which has asserted regulatory jurisdiction over U.S. commercial fusion reactors. We begin with consideration of a basic D-T fusion reactor, independent of plasma confinement approach. Because tritium and radioactivity are present, likely regulation will require containment structures and various safety measures for each component. Regulators are certain to require that all nuclear components of the system be housed in an overall containment vessel that must be held at less than atmospheric pressure to contain any leakage of tritium, radioactive corrosion products, radioactive coolant, and activated elements in the air. In addition, regulators are sure to require plant structure and operations that minimize the potential for clandestine plutonium breeding. Next, we add superconducting magnets and a plasma dump (divertor) to the basic system and recognize the small but nonzero probability of those magnets explosively quenching, potentially causing reactor damage and dramatically increasing containment vessel pressure. Finally, we consider ITER as prototypical of a D-T–fueled fusion power reactor. Because ITER-like systems are subject to damaging plasma disruptions, regulators are almost certain to require safeguards against such events significantly damaging first walls and subsystems. Finally, we believe that regulators are not likely to back off significantly in requirements related to the deuterium-deuterium and D3He fuel cycles even though the tritium production and the neutron damage in the latter fuel cycle are significantly below those in a D-T system. However, regulations for p11B and 3He3He fuel cycles are certain to be dramatically less demanding because of the lack of tritium and essentially no neutron production.