ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Robert L. Hirsch, Gerald L. Kulcinski, Doug Chapin, Herman Diekamp
Fusion Science and Technology | Volume 76 | Number 5 | July 2020 | Pages 670-679
doi.org/10.1080/15361055.2020.1766272
Articles are hosted by Taylor and Francis Online.
The Electric Power Research Institute outlined three criteria important for a commercially viable fusion power plant: competitive electric power cost, regulatory simplicity, and public acceptance. In this paper we consider likely U.S. regulatory considerations for deuterium-tritium (D-T) fusion power reactors, relying on existing criteria and past actions by the U.S. Nuclear Regulatory Commission, which has asserted regulatory jurisdiction over U.S. commercial fusion reactors. We begin with consideration of a basic D-T fusion reactor, independent of plasma confinement approach. Because tritium and radioactivity are present, likely regulation will require containment structures and various safety measures for each component. Regulators are certain to require that all nuclear components of the system be housed in an overall containment vessel that must be held at less than atmospheric pressure to contain any leakage of tritium, radioactive corrosion products, radioactive coolant, and activated elements in the air. In addition, regulators are sure to require plant structure and operations that minimize the potential for clandestine plutonium breeding. Next, we add superconducting magnets and a plasma dump (divertor) to the basic system and recognize the small but nonzero probability of those magnets explosively quenching, potentially causing reactor damage and dramatically increasing containment vessel pressure. Finally, we consider ITER as prototypical of a D-T–fueled fusion power reactor. Because ITER-like systems are subject to damaging plasma disruptions, regulators are almost certain to require safeguards against such events significantly damaging first walls and subsystems. Finally, we believe that regulators are not likely to back off significantly in requirements related to the deuterium-deuterium and D3He fuel cycles even though the tritium production and the neutron damage in the latter fuel cycle are significantly below those in a D-T system. However, regulations for p11B and 3He3He fuel cycles are certain to be dramatically less demanding because of the lack of tritium and essentially no neutron production.