ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Robert L. Hirsch, Gerald L. Kulcinski, Doug Chapin, Herman Diekamp
Fusion Science and Technology | Volume 76 | Number 5 | July 2020 | Pages 670-679
doi.org/10.1080/15361055.2020.1766272
Articles are hosted by Taylor and Francis Online.
The Electric Power Research Institute outlined three criteria important for a commercially viable fusion power plant: competitive electric power cost, regulatory simplicity, and public acceptance. In this paper we consider likely U.S. regulatory considerations for deuterium-tritium (D-T) fusion power reactors, relying on existing criteria and past actions by the U.S. Nuclear Regulatory Commission, which has asserted regulatory jurisdiction over U.S. commercial fusion reactors. We begin with consideration of a basic D-T fusion reactor, independent of plasma confinement approach. Because tritium and radioactivity are present, likely regulation will require containment structures and various safety measures for each component. Regulators are certain to require that all nuclear components of the system be housed in an overall containment vessel that must be held at less than atmospheric pressure to contain any leakage of tritium, radioactive corrosion products, radioactive coolant, and activated elements in the air. In addition, regulators are sure to require plant structure and operations that minimize the potential for clandestine plutonium breeding. Next, we add superconducting magnets and a plasma dump (divertor) to the basic system and recognize the small but nonzero probability of those magnets explosively quenching, potentially causing reactor damage and dramatically increasing containment vessel pressure. Finally, we consider ITER as prototypical of a D-T–fueled fusion power reactor. Because ITER-like systems are subject to damaging plasma disruptions, regulators are almost certain to require safeguards against such events significantly damaging first walls and subsystems. Finally, we believe that regulators are not likely to back off significantly in requirements related to the deuterium-deuterium and D3He fuel cycles even though the tritium production and the neutron damage in the latter fuel cycle are significantly below those in a D-T system. However, regulations for p11B and 3He3He fuel cycles are certain to be dramatically less demanding because of the lack of tritium and essentially no neutron production.