ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Uncertainty contributes to lowest uranium spot prices in 18 months
A combination of plentiful supply and uncertain demand resulted in spot pricing for uranium closing out March below $64 per pound, with dips down to about $63.50 during mid-March—the lowest futures prices in 18 months, according to tracking by analysis firm Trading Economics. Spot prices have also fallen steadily since the beginning of 2024. Meanwhile, long-term prices have held steady at about $80 per pound at the end of March, according to Canadian front-end uranium mining, milling, and conversion company Cameco.
Kun Jie Yang, Yue-Lin Liu, Ning Liu, Peng Shao, Xu Zhang, Yuming Ma
Fusion Science and Technology | Volume 76 | Number 5 | July 2020 | Pages 616-631
Technical Paper | doi.org/10.1080/15361055.2020.1740556
Articles are hosted by Taylor and Francis Online.
We performed systematically first-principles calculations to investigate interstitial H diffusion/permeation of temperature dependence in tungsten (W). The interstitial H diffusion is primarily through two nearest-neighbor tetrahedral positions and its activation energy increases significantly with rising temperature. Phonon vibration plays a decisive role in the behavior of the H activation energy with rising temperature. The H permeation activation energy also depends strongly on the temperature since it is the sum of the formation energy and diffusion activation energy of H. Our calculated H diffusivity/permeability with the temperature agree quantitatively with the reliable experimental data within the error range in W. The vacancy-capturing effect can give a reasonable explanation of the discrepancy between simulation and experiment. Although the diffusion/permeation activation energy and the prefactor strongly depend on the temperature, the diffusivity/permeability of H still obeys quasi-Arrhenius behavior with rising temperature, which is attributed to the compensation effect between the activation energy and the prefactor, i.e., the increment of the prefactor compensates directly the modification of the diffusivity/permeability in the case of a variation in the activation energy with rising temperature.