ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Argonne research aims to improve nuclear fuel recycling and metal recovery
Servis
Scientists at Argonne National Laboratory are investigating a used nuclear fuel recycling technology that could lead to a scaled-down and more efficient approach to metal recovery, according to a recent news article from the lab. The research, led by Argonne radiochemist Anna Servis with funding from the Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-E), could have an impact beyond the nuclear fuel cycle and improve other high-value metal processing, such as rare earth recovery, according to Argonne.
The research: Servis’s work is being carried out under ARPA-E’s CURIE (Converting UNF Radioisotopes Into Energy) program. The specific project—Radioisotope Capture Intensification Using Rotating Packed Bed Contactors—started in 2023 and is scheduled to end in January 2026.
Mahmoud Lotfy, Alice Ying, Mohamed Abdou, Dong Won Lee, Mu-Young Ahn
Fusion Science and Technology | Volume 76 | Number 5 | July 2020 | Pages 605-615
Technical Paper | doi.org/10.1080/15361055.2020.1724737
Articles are hosted by Taylor and Francis Online.
Available experimental efforts on ceramic pebble beds and their associated constitutive equations are necessarily derived from single-effect tests where one parameter is varied and its effects are isolated and studied separately (e.g., using constant temperatures and externally applied loads). These experiments are incapable of reproducing the true multiple/synergistic effects of the physics that occur in real blankets, and the phenomena arising from the interactions of single effects are yet to be discovered. It is unclear whether the combined effect of plasticity and creep under reactor-relevant loading conditions will either enable the altered pebble bed packing configuration to reach an acceptable self-regulating temperature state or significantly deteriorate its heat transfer efficiency and subsequent tritium release. Therefore, studying the isolated thermal and mechanical effects is not sufficient to predict pebble bed behavior. It is the coupling and interdependence between the dynamic thermal and mechanical fields, as well as the synergistic effects between the various modes of deformation, that are key to fully understanding and predicting pebble bed behavior in a realistic fusion environment. However, previous mock-up experimental campaigns thus far have suffered from critical shortfalls that have severely hamstrung their scientific impact. The lack of experimental data that incorporate multiple-effects interactions in addition to the complexity of building a full-scale breeder unit mock-up triggered the need for this experimental effort. The body of work presented in this paper serves to (1) establish and validate the practicality of various volumetric heating simulation techniques for representative thermomechanical study, (2) recreate a prototypical breeder unit’s thermal-hydraulic behavior using a scaled-down reduced-activation ferritic steel box with optimized manifold design, (3) evaluate the thermomechanical properties of the pebble bed using a novel nonintrusive in situ tactile-pressure-sensing technology capable of generating real-time contact pressure maps that reveal spatial and temporal stress evolution, and (4) develop and benchmark a thermomechanical finite element method code that is able to predict the pebble bed’s thermomechanical evolution under the effects of creep and thermal cycling. The results of this study not only present novel experimental techniques and data that enhance our understanding of synergistic thermomechanical interactions and effects, but they also provide valuable data to serve as a basis for validation of the most recent pebble bed numerical models. Finally, it is worth mentioning that this work is part of a compendium around the Thermomechanical Solid Breeder Multiple Effects Experiment experimental campaign, known as TESOMEX. While this paper primarily focuses on novel heating and instrumentation techniques along with their opportunities and limitations, the other two papers shed more light on the prototypical thermomechanical evolution, pebble sintering, and possible modes of failure.