ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Mahmoud Lotfy, Alice Ying, Mohamed Abdou, Dong Won Lee, Mu-Young Ahn
Fusion Science and Technology | Volume 76 | Number 5 | July 2020 | Pages 605-615
Technical Paper | doi.org/10.1080/15361055.2020.1724737
Articles are hosted by Taylor and Francis Online.
Available experimental efforts on ceramic pebble beds and their associated constitutive equations are necessarily derived from single-effect tests where one parameter is varied and its effects are isolated and studied separately (e.g., using constant temperatures and externally applied loads). These experiments are incapable of reproducing the true multiple/synergistic effects of the physics that occur in real blankets, and the phenomena arising from the interactions of single effects are yet to be discovered. It is unclear whether the combined effect of plasticity and creep under reactor-relevant loading conditions will either enable the altered pebble bed packing configuration to reach an acceptable self-regulating temperature state or significantly deteriorate its heat transfer efficiency and subsequent tritium release. Therefore, studying the isolated thermal and mechanical effects is not sufficient to predict pebble bed behavior. It is the coupling and interdependence between the dynamic thermal and mechanical fields, as well as the synergistic effects between the various modes of deformation, that are key to fully understanding and predicting pebble bed behavior in a realistic fusion environment. However, previous mock-up experimental campaigns thus far have suffered from critical shortfalls that have severely hamstrung their scientific impact. The lack of experimental data that incorporate multiple-effects interactions in addition to the complexity of building a full-scale breeder unit mock-up triggered the need for this experimental effort. The body of work presented in this paper serves to (1) establish and validate the practicality of various volumetric heating simulation techniques for representative thermomechanical study, (2) recreate a prototypical breeder unit’s thermal-hydraulic behavior using a scaled-down reduced-activation ferritic steel box with optimized manifold design, (3) evaluate the thermomechanical properties of the pebble bed using a novel nonintrusive in situ tactile-pressure-sensing technology capable of generating real-time contact pressure maps that reveal spatial and temporal stress evolution, and (4) develop and benchmark a thermomechanical finite element method code that is able to predict the pebble bed’s thermomechanical evolution under the effects of creep and thermal cycling. The results of this study not only present novel experimental techniques and data that enhance our understanding of synergistic thermomechanical interactions and effects, but they also provide valuable data to serve as a basis for validation of the most recent pebble bed numerical models. Finally, it is worth mentioning that this work is part of a compendium around the Thermomechanical Solid Breeder Multiple Effects Experiment experimental campaign, known as TESOMEX. While this paper primarily focuses on novel heating and instrumentation techniques along with their opportunities and limitations, the other two papers shed more light on the prototypical thermomechanical evolution, pebble sintering, and possible modes of failure.