ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Woo-Chan Jung, Hung-Man Moon, Pil-Kap Jung, Min-Ho Chang, Hyeon-Gon Lee
Fusion Science and Technology | Volume 76 | Number 4 | May 2020 | Pages 589-595
Technical Paper | doi.org/10.1080/15361055.2020.1729295
Articles are hosted by Taylor and Francis Online.
This study deals with the processes of converting trace CH4 in the oxidation reaction and adsorbing H2O. The conversion of CH4 was confirmed at various reaction temperatures and flow rates by injecting O2 above the equivalence ratio of CH4 in Ar. The conversion was higher at a higher reaction temperature and a lower flow rate. Also, the impurity effects of CO2, CO, and H2O coexisting in the feed gas with CH4 were investigated. When CO2 and H2O were included in the feed gas, CH4 conversion was decreased, and CO contained in the feed gas increased CH4 conversion by the heat of oxidation reaction. When CH4 is converted to CO2 and H2O through oxidation and H2O is adsorbed on the adsorbent, complete recovery of hydrogen isotopes can be obtained. Molecular sieve was used as the adsorbent, and the water adsorption capacity of the adsorbent was confirmed by generating water through the generator. Finally, it was confirmed that converted H2O from CH4 was adsorbed on the absorbent.