ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
M. Khalid Hossain, Kenichi Hashizume, Shinnosuke Jo, Kaname Kawaguchi, Yuji Hatano
Fusion Science and Technology | Volume 76 | Number 4 | May 2020 | Pages 553-566
Technical Paper | doi.org/10.1080/15361055.2020.1728173
Articles are hosted by Taylor and Francis Online.
Hydrogen release behavior from rare earth oxides (REOs) (Y2O3, Sm2O3, Eu2O3, Gd2O3, Dy2O3, Er2O3, and Yb2O3) exposed to 133 Pa of deuterium (D2) gas or 2 kPa of heavy water (D2O) vapor at 873 K for 5 h was examined using thermal desorption spectroscopy. Hydrogen solubility and diffusivity in Y2O3, Gd2O3, Dy2O3, Er2O3, and Yb2O3 exposed to a deuterium-tritium gas mixture (5% to 7% T, 133 Pa) at 873 K and 973 K for 5 h were determined using a tritium imaging plate method. The structural and morphological properties of sintered disk specimens of those REOs were evaluated using an X-ray diffractometer and a scanning electron microscope. From the obtained results, the REO materials were clearly categorized into two kinds in terms of their crystal structure and hydrogen solubility: Monoclinic specimens of Sm2O3, Eu2O3, and Gd2O3 had relatively high hydrogen solubility and diffusivity, while cubic Y2O3, Dy2O3, Er2O3, and Yb2O3 had lower ones. The present study suggests that the cubic REOs could be suitable in a nuclear fusion reactor as the tritium barrier materials.