ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Dongxun Zhang, Wei Liu, Wenguan Liu
Fusion Science and Technology | Volume 76 | Number 4 | May 2020 | Pages 543-552
Technical Paper | doi.org/10.1080/15361055.2020.1725368
Articles are hosted by Taylor and Francis Online.
With the method of gas-driven permeation, a series of permeation experiments was carried out using Hastelloy N alloy membrane in an elevated temperature range of 400°C to 800°C with different hydrogen isotopes. A complete set of permeability, diffusivity, and Sieverts’ constant for hydrogen and deuterium in Hastelloy N alloy was successfully obtained. The isotope effect in the diffusion process was analyzed and compared with references. The ratios of diffusive transport parameters for hydrogen and deuterium were a permeability ratio of ФH/ФD = 1.32exp(0.34kJ/RT), a diffusivity ratio of DH/DD = 1.15exp(−0.41kJ/RT), and a Sieverts’ constant ratio of KS,H/KS,D = 1.16exp(0.21kJ/RT). The result that the permeation flux of deuterium was decreased after introducing hydrogen could be used to suppress the permeation of tritium in future tritium control of the Fluoride-salt-cooled High-temperature Reactor (FHR). Compared with NiO, the Cr2O3 formed in the surface oxidation layer of Hastelloy N alloy showed better hydrogen permeation barrier performance after baking above 700°C in air.