ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
X. Liu, W. Peng, F. Xie, J. Cao, Y. Dong, X. Duan, Y. Wen, B. Shan, K. Sun, G. Zheng
Fusion Science and Technology | Volume 76 | Number 4 | May 2020 | Pages 513-525
Technical Paper | doi.org/10.1080/15361055.2020.1718856
Articles are hosted by Taylor and Francis Online.
Tritium (3H) has been increasingly researched when assessing the environmental impact of nuclear reactors and other nuclear facilities because it is widely present in nuclear systems and can easily enter the environment. The first pebble-bed gas-cooled test reactor in China, the 10 MW high temperature gas-cooled test reactor (HTR-10), uses helium, graphite, and graphite spheres containing embedded tristructural-isotropic–coated particles as primary coolant, reflectors, and fuel elements, respectively. Several experiments that involved the 3H source term in HTR-10 were performed, and they measured the 3H specific activity and its distribution in the irradiated graphite spheres from the core, 3H activity concentration in the primary helium, 3H activity concentration during the regeneration of the molecular sieve adsorber in the helium purification system, and 3H amount in the gaseous effluent discharge from the stack. The experimental data were summarized and compared with the theoretical predictions. The balance diagram of the 3H source term in HTR-10 is introduced in this paper. Sensitivity analysis was performed to illustrate the effect of the 3He abundance in the primary helium and Li content in the graphite reflectors on the 3H activity concentration in the primary coolant of HTR-10. The interactions between graphite and different hydrogen isotopes (1H, 3H, 1H2, 1H3H, and 3H2) were investigated using first-principles calculations and the diffusion theory. The results indicated that molecular 3H tended to diffuse in graphite.