ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
X. Liu, W. Peng, F. Xie, J. Cao, Y. Dong, X. Duan, Y. Wen, B. Shan, K. Sun, G. Zheng
Fusion Science and Technology | Volume 76 | Number 4 | May 2020 | Pages 513-525
Technical Paper | doi.org/10.1080/15361055.2020.1718856
Articles are hosted by Taylor and Francis Online.
Tritium (3H) has been increasingly researched when assessing the environmental impact of nuclear reactors and other nuclear facilities because it is widely present in nuclear systems and can easily enter the environment. The first pebble-bed gas-cooled test reactor in China, the 10 MW high temperature gas-cooled test reactor (HTR-10), uses helium, graphite, and graphite spheres containing embedded tristructural-isotropic–coated particles as primary coolant, reflectors, and fuel elements, respectively. Several experiments that involved the 3H source term in HTR-10 were performed, and they measured the 3H specific activity and its distribution in the irradiated graphite spheres from the core, 3H activity concentration in the primary helium, 3H activity concentration during the regeneration of the molecular sieve adsorber in the helium purification system, and 3H amount in the gaseous effluent discharge from the stack. The experimental data were summarized and compared with the theoretical predictions. The balance diagram of the 3H source term in HTR-10 is introduced in this paper. Sensitivity analysis was performed to illustrate the effect of the 3He abundance in the primary helium and Li content in the graphite reflectors on the 3H activity concentration in the primary coolant of HTR-10. The interactions between graphite and different hydrogen isotopes (1H, 3H, 1H2, 1H3H, and 3H2) were investigated using first-principles calculations and the diffusion theory. The results indicated that molecular 3H tended to diffuse in graphite.