ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Masahiro Tanaka, Naoyuki Suzuki, Hiromi Kato, Chie Iwata, Naofumi Akata, Hiroshi Hayashi, Hitoshi Miyake
Fusion Science and Technology | Volume 76 | Number 4 | May 2020 | Pages 475-480
Technical Paper | doi.org/10.1080/15361055.2020.1718840
Articles are hosted by Taylor and Francis Online.
In a large fusion test facility, when a deuterium-plasma experiment is conducted a small amount of tritium is produced by the d(d, p)t reaction. From the viewpoints of radiation management and public acceptance, the tritium monitoring and recovery systems were developed and installed for the fusion test device. As for the tritium monitoring equipment, an expiratory test system of tritium was utilized for the internal dose assessment of workers. Active tritium samplers were operated continuously to monitor the amount of tritium released from the stack. As for the tritium recovery equipment, an exhaust detritiation system (EDS) for the plasma experiment has been developed and installed at the downstream of the vacuum pumping system in the fusion test device. All of the exhausted tritium from the vacuum vessel was treated by the EDS during the deuterium-plasma experimental campaign. Then, the tritium recovery rate achieved was more than 95%.