ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Argonne research aims to improve nuclear fuel recycling and metal recovery
Servis
Scientists at Argonne National Laboratory are investigating a used nuclear fuel recycling technology that could lead to a scaled-down and more efficient approach to metal recovery, according to a recent news article from the lab. The research, led by Argonne radiochemist Anna Servis with funding from the Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-E), could have an impact beyond the nuclear fuel cycle and improve other high-value metal processing, such as rare earth recovery, according to Argonne.
The research: Servis’s work is being carried out under ARPA-E’s CURIE (Converting UNF Radioisotopes Into Energy) program. The specific project—Radioisotope Capture Intensification Using Rotating Packed Bed Contactors—started in 2023 and is scheduled to end in January 2026.
Gregory C. Staack, David W. James
Fusion Science and Technology | Volume 76 | Number 4 | May 2020 | Pages 471-474
Technical Paper | doi.org/10.1080/15361055.2020.1718839
Articles are hosted by Taylor and Francis Online.
Hydride beds containing LaNi4.25Al0.75 (LANA.75) are used to store significant quantities of tritium. These hydride beds have a limited service life due to radiolytic decay of tritium to 3He within the metal matrix. The crystal structure of the hydride is altered by trapped 3He, which has a very low solubility in the metal. The altered structure induces the formation of a heel of trapped hydrogen isotopes and diminishes the reversible capacity of the hydride. With sufficient tritium exposure, the bed loses the ability to deliver 3He-free tritium, and replacement is needed. Demonstration of a means to regenerate tritium-aged LANA.75 in situ would delay or even eliminate the need to replace lanthanum nickel aluminum (LANA) hydride beds. This paper presents test results obtained during regeneration testing. The efficacy of regeneration testing was evaluated by comparing tritium desorption isotherms collected on the hydride before and after exposure to regeneration conditions. Testing was performed on a bench-scale tritium-aged LANA.75 sample that was previously isotopically exchanged (from tritium to deuterium), passivated, and recovered. Once transferred to a high-temperature test cell, the deuterium heel of the sample was isotopically exchanged with tritium, and a baseline desorption isotherm was collected for comparison purposes. The sample was then heated under vacuum, and comparative isotherms were gathered between regeneration evolutions. Shifts in isotherms show progressive improvements with higher-temperature exposure over the tritium-aged baseline. The heel was significantly reduced, and the reversible capacity of the hydride was essentially restored to near virgin values. For all tested conditions, the plateau pressure remained higher than virgin LANA.75.