ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Gregory C. Staack, David W. James
Fusion Science and Technology | Volume 76 | Number 4 | May 2020 | Pages 471-474
Technical Paper | doi.org/10.1080/15361055.2020.1718839
Articles are hosted by Taylor and Francis Online.
Hydride beds containing LaNi4.25Al0.75 (LANA.75) are used to store significant quantities of tritium. These hydride beds have a limited service life due to radiolytic decay of tritium to 3He within the metal matrix. The crystal structure of the hydride is altered by trapped 3He, which has a very low solubility in the metal. The altered structure induces the formation of a heel of trapped hydrogen isotopes and diminishes the reversible capacity of the hydride. With sufficient tritium exposure, the bed loses the ability to deliver 3He-free tritium, and replacement is needed. Demonstration of a means to regenerate tritium-aged LANA.75 in situ would delay or even eliminate the need to replace lanthanum nickel aluminum (LANA) hydride beds. This paper presents test results obtained during regeneration testing. The efficacy of regeneration testing was evaluated by comparing tritium desorption isotherms collected on the hydride before and after exposure to regeneration conditions. Testing was performed on a bench-scale tritium-aged LANA.75 sample that was previously isotopically exchanged (from tritium to deuterium), passivated, and recovered. Once transferred to a high-temperature test cell, the deuterium heel of the sample was isotopically exchanged with tritium, and a baseline desorption isotherm was collected for comparison purposes. The sample was then heated under vacuum, and comparative isotherms were gathered between regeneration evolutions. Shifts in isotherms show progressive improvements with higher-temperature exposure over the tritium-aged baseline. The heel was significantly reduced, and the reversible capacity of the hydride was essentially restored to near virgin values. For all tested conditions, the plateau pressure remained higher than virgin LANA.75.