ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Radiant secures funding, moves toward microreactor testing in INL’s DOME
Radiant Industries has announced a $100 million Series C funding round to be used primarily to complete its Kaleidos Development Unit (KDU) microreactor for testing in Idaho National Laboratory's Demonstration of Microreactor Experiments (DOME) facility within two years.
Yasunobu Arikawa, Yuki Iwasa, Kohei Yamanoi, Keisuke Iwano, Shinsuke Fujioka, Akifumi Iwamoto, Mitsuo Nakai, Yuji Hatano, Masanori Hara, Satoshi Akamaru, Takayoshi Norimatsu, Ryosuke Kodama
Fusion Science and Technology | Volume 76 | Number 4 | May 2020 | Pages 464-470
Technical Paper | doi.org/10.1080/15361055.2020.1716458
Articles are hosted by Taylor and Francis Online.
In inertial confinement fusion (ICF), a fuel target containing deuterium and tritium is used. In recent ICF experiments on the Gekko XII LFEX facility at the Institute of Laser Engineering at Osaka University (ILE-Osaka), a target comprised of a polystyrene capsule filled with D2O liquid and a solution of X-ray tracer materials, such as copper, titanium, or chlorine, was developed. In this study, an additional T2O doping technique by which tritium can be mixed uniformly has been developed. The T2O is synthesized by T2 gas using a CuO oxidation catalyst. The T2O is agglutinated by cold trap and transferred to a target cell in which a D2O-solution-filled target is placed. Because polystyrene is slightly permeable for T2O and D2O, D2O is exchanged by T2O and completely mixed. Thus, a uniform tritium-doped ICF target with various materials can be fabricated. The T2O synthesizing and doping system is developed and tested using H2 as a cold run. The H2O is successfully doped to a D2O prefilled target at approximately 50% doping. This scheme will be utilized in future fast ignition experiments at ILE-Osaka.