ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Ion Cristescu, F. Priester, D. Rapisarda, A. Santucci, M. Utili
Fusion Science and Technology | Volume 76 | Number 4 | May 2020 | Pages 446-457
Technical Paper | doi.org/10.1080/15361055.2020.1716456
Articles are hosted by Taylor and Francis Online.
The development of commercial fusion power production using deuterium and tritium has been ongoing worldwide for decades and the European version of DEMO will undergo conceptual design between 2021 and 2027. Among the different ways to provide electrical power, nuclear fusion will be publicly accepted if the environmental impact is at tolerable levels. The auxiliary power requirements of fusion power reactors will need to be optimized, and heat will need to be efficiently converted to electrical power through the usage of high-temperature steam. On the other hand, heat might need to be intermittently stored to account for pulsed plasma operation, on the expense of the temperature level available for steam generation. Tritium is highly mobile and its management as far as containment and confinement are concerned becomes more difficult with the increasing temperatures of the structural materials; any effluents and releases should be kept to an absolute minimum. Therefore, tritium containment and confinement equipment and procedures need to be well integrated into the design and into the operation of fusion power reactors.
This paper focuses on the topics of the main tritium technologies under development in the EU DEMO Breeding Blanket Program, covering especially tritium breeding and extraction technologies. In addition, the identification of the main tritium sources as far as permeation and escape into the environment are concerned and the main barriers for the mitigation of tritium release into the environment are introduced.