ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Argonne research aims to improve nuclear fuel recycling and metal recovery
Servis
Scientists at Argonne National Laboratory are investigating a used nuclear fuel recycling technology that could lead to a scaled-down and more efficient approach to metal recovery, according to a recent news article from the lab. The research, led by Argonne radiochemist Anna Servis with funding from the Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-E), could have an impact beyond the nuclear fuel cycle and improve other high-value metal processing, such as rare earth recovery, according to Argonne.
The research: Servis’s work is being carried out under ARPA-E’s CURIE (Converting UNF Radioisotopes Into Energy) program. The specific project—Radioisotope Capture Intensification Using Rotating Packed Bed Contactors—started in 2023 and is scheduled to end in January 2026.
Ion Cristescu, F. Priester, D. Rapisarda, A. Santucci, M. Utili
Fusion Science and Technology | Volume 76 | Number 4 | May 2020 | Pages 446-457
Technical Paper | doi.org/10.1080/15361055.2020.1716456
Articles are hosted by Taylor and Francis Online.
The development of commercial fusion power production using deuterium and tritium has been ongoing worldwide for decades and the European version of DEMO will undergo conceptual design between 2021 and 2027. Among the different ways to provide electrical power, nuclear fusion will be publicly accepted if the environmental impact is at tolerable levels. The auxiliary power requirements of fusion power reactors will need to be optimized, and heat will need to be efficiently converted to electrical power through the usage of high-temperature steam. On the other hand, heat might need to be intermittently stored to account for pulsed plasma operation, on the expense of the temperature level available for steam generation. Tritium is highly mobile and its management as far as containment and confinement are concerned becomes more difficult with the increasing temperatures of the structural materials; any effluents and releases should be kept to an absolute minimum. Therefore, tritium containment and confinement equipment and procedures need to be well integrated into the design and into the operation of fusion power reactors.
This paper focuses on the topics of the main tritium technologies under development in the EU DEMO Breeding Blanket Program, covering especially tritium breeding and extraction technologies. In addition, the identification of the main tritium sources as far as permeation and escape into the environment are concerned and the main barriers for the mitigation of tritium release into the environment are introduced.