ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Yasuhisa Oya, Suguru Masuzaki, Masayuki Tokitani, Moeko Nakata, Fei Sun, Makoto Oyaidzu, Kanetsuku Isobe, Nobuyuki Asakura, Teppei Otsuka, Anna Widdowson, Jari Likonen, Marek Rubel, JET Contributors
Fusion Science and Technology | Volume 76 | Number 4 | May 2020 | Pages 439-445
Technical Paper | doi.org/10.1080/15361055.2020.1716455
Articles are hosted by Taylor and Francis Online.
Hydrogen isotope retention and chemical state for the tiles exposed to plasma in the JET–ITER-like wall (ILW) during two campaigns in 2011–2012 (first campaign, ILW-1) and 2015–2016 (third campaign, ILW-3) were studied and compared by means of X-ray photoelectron spectroscopy and thermal desorption spectroscopy. In both campaigns the upper part of the inner divertor tiles was the deposition-dominated area, while erosion was observed on the outer divertor tiles. Therefore, higher deuterium retention was found on the inner divertor tiles. The major D desorption peak for the inner divertor tiles from ILW-3 was located at the temperature range of 470°C to 520°C, which was higher than measured after ILW-1: 370°C to 430°C. The XPS analyses showed the formation of a BeO layer on the ILW-3 inner divertor tiles, while after ILW-1 the layers also contained a significant amount of carbon. Deuterium retention was reduced toward the outer divertor tiles. The differences could be related to the difference in the power level in the two campaigns.