ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Argonne research aims to improve nuclear fuel recycling and metal recovery
Servis
Scientists at Argonne National Laboratory are investigating a used nuclear fuel recycling technology that could lead to a scaled-down and more efficient approach to metal recovery, according to a recent news article from the lab. The research, led by Argonne radiochemist Anna Servis with funding from the Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-E), could have an impact beyond the nuclear fuel cycle and improve other high-value metal processing, such as rare earth recovery, according to Argonne.
The research: Servis’s work is being carried out under ARPA-E’s CURIE (Converting UNF Radioisotopes Into Energy) program. The specific project—Radioisotope Capture Intensification Using Rotating Packed Bed Contactors—started in 2023 and is scheduled to end in January 2026.
C. Fagan, M. Sharpe, W. T. Shmayda, W. U. Schröder
Fusion Science and Technology | Volume 76 | Number 4 | May 2020 | Pages 424-429
Technical Paper | doi.org/10.1080/15361055.2020.1714409
Articles are hosted by Taylor and Francis Online.
The effect of a thin alumina coating on stainless steel 316 (SS316) samples on tritium adsorption and transport are reported. Compact films of alumina were produced on the surfaces of pristine SS316 samples using an atomic layer deposition (ALD) technique. Subsequently, these samples were exposed for 24 h to a deuterium-tritium gas mixture (PT = 0.5 atm, 25°C). A combination of methods including selective etching and programmed thermal desorption were employed to assess both the depth profile of the tritium concentration in the sample and the total quantity of tritium absorbed, respectively. Tritium was quantitatively determined through the measurement of beta radioactivity using liquid-scintillation counting techniques. Data suggest that SS316 with a thin film of alumina reduces the total tritium uptake by ~25% relative to uncoated samples. Importantly, such films appear to reduce, by a factor of 200, tritium diffusion into SS316 and therefore constitute an effective barrier against tritium transport. This observation is of practical importance for tritium and, generally, reactive gas handling.