ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
C. Fagan, M. Sharpe, W. T. Shmayda, W. U. Schröder
Fusion Science and Technology | Volume 76 | Number 4 | May 2020 | Pages 424-429
Technical Paper | doi.org/10.1080/15361055.2020.1714409
Articles are hosted by Taylor and Francis Online.
The effect of a thin alumina coating on stainless steel 316 (SS316) samples on tritium adsorption and transport are reported. Compact films of alumina were produced on the surfaces of pristine SS316 samples using an atomic layer deposition (ALD) technique. Subsequently, these samples were exposed for 24 h to a deuterium-tritium gas mixture (PT = 0.5 atm, 25°C). A combination of methods including selective etching and programmed thermal desorption were employed to assess both the depth profile of the tritium concentration in the sample and the total quantity of tritium absorbed, respectively. Tritium was quantitatively determined through the measurement of beta radioactivity using liquid-scintillation counting techniques. Data suggest that SS316 with a thin film of alumina reduces the total tritium uptake by ~25% relative to uncoated samples. Importantly, such films appear to reduce, by a factor of 200, tritium diffusion into SS316 and therefore constitute an effective barrier against tritium transport. This observation is of practical importance for tritium and, generally, reactive gas handling.