ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Inkjet droplets of radioactive material enable quick, precise testing at NIST
Researchers at the National Institute of Standards and Technology have developed a technique called cryogenic decay energy spectrometry capable of detecting single radioactive decay events from tiny material samples and simultaneously identifying the atoms involved. In time, the technology could replace characterization tasks that have taken months and could support rapid, accurate radiopharmaceutical development and used nuclear fuel recycling, according to an article published on July 8 by NIST.
Kyeongmin Oh, Dowan Kim, Kisung Lim, Hyunchul Ju
Fusion Science and Technology | Volume 76 | Number 4 | May 2020 | Pages 415-423
Technical Paper | doi.org/10.1080/15361055.2020.1712995
Articles are hosted by Taylor and Francis Online.
We present a three-dimensional (3-D) steam-methane-reforming (SMR) model consisting of a steam-reforming (SR) reactor, water gas shift reactor, preferential oxidation reactor, catalytic burner, heat exchangers, and balance of plant components. The mass and energy balance equations are derived considering the kinetic expressions of various SMR reactions and implemented in the commercial computational fluid dynamics software program Fluent by employing user-defined functions. The 3-D SMR model is then applied to a 10-kW SR reformer geometry and simulated for comparison with in-house experimental data. The simulation results and the experimental data show good agreement, and the model accurately captures the experimental exhaust gas compositions and the reactor outlet temperatures. The proposed 3-D simulation tool for predicting various transport and chemical processes is highly desirable from the viewpoint of design and optimization of full-scale SMR-based fuel processors.