ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Argonne research aims to improve nuclear fuel recycling and metal recovery
Servis
Scientists at Argonne National Laboratory are investigating a used nuclear fuel recycling technology that could lead to a scaled-down and more efficient approach to metal recovery, according to a recent news article from the lab. The research, led by Argonne radiochemist Anna Servis with funding from the Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-E), could have an impact beyond the nuclear fuel cycle and improve other high-value metal processing, such as rare earth recovery, according to Argonne.
The research: Servis’s work is being carried out under ARPA-E’s CURIE (Converting UNF Radioisotopes Into Energy) program. The specific project—Radioisotope Capture Intensification Using Rotating Packed Bed Contactors—started in 2023 and is scheduled to end in January 2026.
Masoomeh Ghasemi, Jaeyoo Choi, Hyun-Goo Kang, Hyunchul Ju
Fusion Science and Technology | Volume 76 | Number 4 | May 2020 | Pages 404-414
Technical Paper | doi.org/10.1080/15361055.2020.1712994
Articles are hosted by Taylor and Francis Online.
The purpose of this study is to investigate the influence of design parameters for the scale-up of the depleted uranium (DU) bed. The actual DU bed chosen for this study has a DU loading of 1.86 kg for a tritium capacity of 70 g and is cylindrical in shape and equipped with copper foam to enhance internal heat transfer. Based on the reference DU bed geometry, three different scale-up bed geometries to increase the amount of DU loading up to 9.3 kg were designed under different aspect ratios for comparison purposes and simulated using a three-dimensional transient DU hydride model developed in our previous studies. The simulation results are compared in terms of the evolution of the DU hydride temperature and H/U atomic ratio during the DU hydriding process. This study helps to identify key design parameters (e.g., it is critical to scale up the DU bed geometry).