ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Ontario eyes new nuclear development
A 1,300-acre site left undeveloped on the shores of Lake Ontario four decades ago could see new life as the home to a large nuclear facility.
Yudai Urabe, Kenichi Hashizume, Teppei Otsuka, Kan Sakamoto
Fusion Science and Technology | Volume 76 | Number 4 | May 2020 | Pages 392-397
Technical Paper | doi.org/10.1080/15361055.2020.1712992
Articles are hosted by Taylor and Francis Online.
Tritium permeability through FeCrAl-oxide-dispersion-strengthened (ODS) ferritic steel containing Ce oxides (Ce-ODS steel) was measured at temperatures ranging from 373 to 623 K. Some of the Ce-ODS steel specimens were oxidized by means of an autoclave treatment at 563 K for 30 days to examine the effect of the surface oxidized layer on the tritium permeability. The tritium permeability obtained for nonoxidized specimen was consistent with that for other common ferritic steels and FeCrAl ferritic steel. For the oxidized specimen, the surface oxide layer suppressed the apparent tritium permeability. The permeability for the oxidized specimen also depended on the atmosphere of the downstream in the permeation experiment: An atmosphere containing water vapor yielded lower tritium permeability compared with a reductive one.