ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
R. Koch
Fusion Science and Technology | Volume 45 | Number 2 | March 2004 | Pages 183-192
Technical Paper | Plasma and Fusion Energy Physics - Plasma Heating and Current Drive | doi.org/10.13182/FST04-A482
Articles are hosted by Taylor and Francis Online.
The additional heating of plasmas by injection of fast neutrals - or Neutral Beam Injection (NBI) - is reviewed. First, the limitations of ohmic heating in tokamaks and the other motivations for using additional heating in fusion machines are discussed. Next, the principle of operation of neutral beam injectors, and state of the art, are outlined. Positive-ion (PNBI) and negative-ion (NNBI) based concepts are discussed. Next, the physical processes by which the beam transfers energy to the plasma, namely ionisation and slowing-down are described. For both, an elementary theory is given and the comparison with experimental results is made. Applications of NBI to heating, current drive and rotation drive are reviewed. The prospects of NBI for ITER are commented.