ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Radiant secures funding, moves toward microreactor testing in INL’s DOME
Radiant Industries has announced a $100 million Series C funding round to be used primarily to complete its Kaleidos Development Unit (KDU) microreactor for testing in Idaho National Laboratory's Demonstration of Microreactor Experiments (DOME) facility within two years.
Max Aker, Marco Röllig
Fusion Science and Technology | Volume 76 | Number 3 | April 2020 | Pages 373-378
Technical Paper | doi.org/10.1080/15361055.2020.1712989
Articles are hosted by Taylor and Francis Online.
Beta-induced X-ray spectrometry (BIXS) is a promising method for activity monitoring of tritiated gas species. BIXS systems measure bremsstrahlung and characteristic X-rays generated by interactions of beta decay electrons with surfaces within the measurement chamber. BIXS and other highly sensitive methods such as ionization counting are limited in accuracy by the tritium memory effect, a preconditioning dependent background signal caused by the sorption of tritium on surfaces. In this work, different surface materials have been investigated aiming at reducing the tritium memory effect while providing a high bremsstrahlung yield. A modular BIXS setup was developed that allows the consecutive investigation of different measurement cells utilizing the same detector while protecting it from contamination during cell exchanges. An uncoated stainless steel cell was compared to cells coated with Au, Ir, Ti-W, Ti-Au-Al, and Ti-Au-Cu layer systems. The sample cells were repeatedly exposed to 1100 Pa of molecular tritium. The development of the resulting memory effect was measured during the evacuation between consecutive exposures. Additionally, the background signal decay was investigated in a long-term measurement after the last exposure. In this presentation, the measurement results of the relative tritium memory effect from various surfaces will be shown. The lowest memory effect was measured for the gold-coated sample cell, reaching a background signal equal to (0.83 ± 0.14)% of the signal during exposure after a total dosage of 21.33 × 104 Pa h.