ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Argonne research aims to improve nuclear fuel recycling and metal recovery
Servis
Scientists at Argonne National Laboratory are investigating a used nuclear fuel recycling technology that could lead to a scaled-down and more efficient approach to metal recovery, according to a recent news article from the lab. The research, led by Argonne radiochemist Anna Servis with funding from the Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-E), could have an impact beyond the nuclear fuel cycle and improve other high-value metal processing, such as rare earth recovery, according to Argonne.
The research: Servis’s work is being carried out under ARPA-E’s CURIE (Converting UNF Radioisotopes Into Energy) program. The specific project—Radioisotope Capture Intensification Using Rotating Packed Bed Contactors—started in 2023 and is scheduled to end in January 2026.
Max Aker, Marco Röllig
Fusion Science and Technology | Volume 76 | Number 3 | April 2020 | Pages 373-378
Technical Paper | doi.org/10.1080/15361055.2020.1712989
Articles are hosted by Taylor and Francis Online.
Beta-induced X-ray spectrometry (BIXS) is a promising method for activity monitoring of tritiated gas species. BIXS systems measure bremsstrahlung and characteristic X-rays generated by interactions of beta decay electrons with surfaces within the measurement chamber. BIXS and other highly sensitive methods such as ionization counting are limited in accuracy by the tritium memory effect, a preconditioning dependent background signal caused by the sorption of tritium on surfaces. In this work, different surface materials have been investigated aiming at reducing the tritium memory effect while providing a high bremsstrahlung yield. A modular BIXS setup was developed that allows the consecutive investigation of different measurement cells utilizing the same detector while protecting it from contamination during cell exchanges. An uncoated stainless steel cell was compared to cells coated with Au, Ir, Ti-W, Ti-Au-Al, and Ti-Au-Cu layer systems. The sample cells were repeatedly exposed to 1100 Pa of molecular tritium. The development of the resulting memory effect was measured during the evacuation between consecutive exposures. Additionally, the background signal decay was investigated in a long-term measurement after the last exposure. In this presentation, the measurement results of the relative tritium memory effect from various surfaces will be shown. The lowest memory effect was measured for the gold-coated sample cell, reaching a background signal equal to (0.83 ± 0.14)% of the signal during exposure after a total dosage of 21.33 × 104 Pa h.