ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
A. N. Bukin, V. S. Moseeva, A. V. Ovcharov, S. A. Marunich, Yu. S. Pak, M. B. Rozenkevich
Fusion Science and Technology | Volume 76 | Number 3 | April 2020 | Pages 358-365
Technical Paper | doi.org/10.1080/15361055.2020.1712981
Articles are hosted by Taylor and Francis Online.
In this work, experimental and mathematical substantiation of the possibility of using the new RCTU-4 hydrophobic catalyst [0.9 mass % Pt/styrene and divinylbenzene (SDVB)] in the separation of protium-tritium isotopic mixtures by a two-temperature catalytic exchange method in a water-hydrogen system was carried out. Variation of the synthesis parameters of the support and the catalyst allowed a significant increase in the activity (≥50 s–1) and heat resistance (≈550 K) of the investigated sample compared to the previously used catalyst RCTU-3SM (kexp = 12 s−1; heat resistance = 388 K). The mathematical model presented in the paper considers three phases (liquid water, steam, and hydrogen gas) and allows optimization of dual-temperature installations in the water-hydrogen system for any isotopic mixtures.