ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Suh-Young Lee, Min Ho Chang, Jae-Uk Lee, Jin-Kuk Ha, Sei-Hun Yun, In-Beum Lee, Euy Soo Lee
Fusion Science and Technology | Volume 76 | Number 3 | April 2020 | Pages 351-357
Technical Paper | doi.org/10.1080/15361055.2020.1712980
Articles are hosted by Taylor and Francis Online.
This paper proposes a mathematical model for the optimal operation of the fuel cycle of ITER. The developed model aims to minimize the tritium inventory in the fuel cycle by adopting a two-phased scheduling approach. To consider multiple equipment in the fuel cycle, the proposed solving algorithm is designed as sequential scheduling models: (Phase I) to minimize tritium inventory in the vacuum roughing system and (Phase II) to minimize tritium working inventory in the isotope separation system. The scheduling models are developed based on a state-task-network method. Given a required amount of tritium for fueling scenarios considering ramp-up, flat-top, and ramp-down, the proposed model provides the optimal operation plan for deuterium-tritium plasma operation including information on fueling rate, duration, and timing between each unit. Among six case studies, the noninductive tokamak operation mode with high tritium demands showed the highest tritium working inventory during one burn-and-dwell cycle.