ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
S. E. Lee, Y. Hatano, M. Hara, M. Matsuyama
Fusion Science and Technology | Volume 76 | Number 3 | April 2020 | Pages 327-332
Technical Paper | doi.org/10.1080/15361055.2020.1711855
Articles are hosted by Taylor and Francis Online.
Nondestructive measurement of tritium (T) content in solid materials is important for safe and cost-effective disposal of contaminated wastes, and beta-ray induced X-ray spectrometry (BIXS) has been developed for this purpose. A common way to obtain depth profiles of T in solids using BIXS is to perform simulation of X-ray spectra for assumed depth profiles and find a profile giving the best agreement with observation. A detailed understanding of attenuation of low-energy X-rays (≤18.6 keV) by detector components such as a window material is required for interpretation of measured spectra and simulation. In this study, BIXS spectra of a tungsten reference sample with known T depth profile were measured using two different semiconductor detectors and simulated using the Monte Carlo simulation toolkit Geant4. In the low-energy region (<2 keV), the difference in internal structure resulted in a noticeable difference in the BIXS spectra. The disagreement between the measured and the simulated spectra was also significant at <2 keV. Nevertheless, at >2 keV, the BIXS spectra were insensitive to the internal structure of the detector, and the simulated spectra agreed well with the measured ones. The mechanism underlying the difference in the low-energy region was discussed.