ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
S. E. Lee, Y. Hatano, M. Hara, M. Matsuyama
Fusion Science and Technology | Volume 76 | Number 3 | April 2020 | Pages 327-332
Technical Paper | doi.org/10.1080/15361055.2020.1711855
Articles are hosted by Taylor and Francis Online.
Nondestructive measurement of tritium (T) content in solid materials is important for safe and cost-effective disposal of contaminated wastes, and beta-ray induced X-ray spectrometry (BIXS) has been developed for this purpose. A common way to obtain depth profiles of T in solids using BIXS is to perform simulation of X-ray spectra for assumed depth profiles and find a profile giving the best agreement with observation. A detailed understanding of attenuation of low-energy X-rays (≤18.6 keV) by detector components such as a window material is required for interpretation of measured spectra and simulation. In this study, BIXS spectra of a tungsten reference sample with known T depth profile were measured using two different semiconductor detectors and simulated using the Monte Carlo simulation toolkit Geant4. In the low-energy region (<2 keV), the difference in internal structure resulted in a noticeable difference in the BIXS spectra. The disagreement between the measured and the simulated spectra was also significant at <2 keV. Nevertheless, at >2 keV, the BIXS spectra were insensitive to the internal structure of the detector, and the simulated spectra agreed well with the measured ones. The mechanism underlying the difference in the low-energy region was discussed.