ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Uncertainty contributes to lowest uranium spot prices in 18 months
A combination of plentiful supply and uncertain demand resulted in spot pricing for uranium closing out March below $64 per pound, with dips down to about $63.50 during mid-March—the lowest futures prices in 18 months, according to tracking by analysis firm Trading Economics. Spot prices have also fallen steadily since the beginning of 2024. Meanwhile, long-term prices have held steady at about $80 per pound at the end of March, according to Canadian front-end uranium mining, milling, and conversion company Cameco.
George Ana, Anisia Bornea, Ciprian Bucur, Alina Niculescu, Felicia Vasut, Ovidiu Balteanu, Marius Zamfirache
Fusion Science and Technology | Volume 76 | Number 3 | April 2020 | Pages 321-326
Technical Paper | doi.org/10.1080/15361055.2020.1711854
Articles are hosted by Taylor and Francis Online.
Whether they are based on fusion (JET, ITER, DEMO) or fission (e.g., CANDU type) or are cooled using molted salts [molten salt reactors (MSRs)], nuclear reactors generate significant amounts of waste in the form of low-level tritiated light water or heavy water, which generates risks for the environment and radiological risks for operating personnel. Given the wide range of tritium concentrations of tritiated water waste, processing it efficiently is possible only if the process is based on the combined process of liquid phase catalitic exchange and electrolysis of water. During this process, tritium is concentrated as tritiated water, which reduces the amount of waste and concentrates the water at the isotopic level high enough for further processing in view of tritium recovery, employing isotopic transfer in gas form. This paper reports on the modification of an industrial hydrogen generator in view of tritium compatibility to be used for further processing of tritiated (heavy) water for tritium recovery. Additionally, analysis will be made, and results will be presented on what will be the tritium/deuterium concentration profile in the generator and what influence the water holdup will have on the isotope concentration.