ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Sebastian Mirz, Tim Brunst, Robin Größle, Bennet Krasch
Fusion Science and Technology | Volume 76 | Number 3 | April 2020 | Pages 284-290
Technical Paper | doi.org/10.1080/15361055.2020.1711688
Articles are hosted by Taylor and Francis Online.
For the fuel cycles of fusion power plants, highly specialized in-line analytic systems are crucial for efficient process control, monitoring, and accountancy. One of these systems under development is infrared (IR) absorption spectroscopy of liquid hydrogen isotopologue mixtures that can be used for in-line process control and monitoring of cryogenic distillation. The main challenge of this method is the complex calibration procedure since the integral IR absorption strength is nonlinearly correlated with the isotopologue composition. Typical calibration procedures make use of well-known samples produced by mixing atomic pure samples and referenced by p-V-T-measurement. The samples are catalyzed to produce samples containing heteronuclear molecules. By this procedure, one cannot exceed the chemical equilibrium of high temperatures (mass action coefficient Kc<4). Therefore, it is not possible to produce samples with an HD, HT, or DT concentration above 50% by catalysis or natural equilibration. However, in isotope or isotopologue separation, such as in cryogenic distillation, this equilibrium will be regularly exceeded. In the case of IR absorption spectroscopy on liquid hydrogen isotopologues, additional care needs to be taken for calibration since the calibration functions are highly nonlinear. We tested our calibration in the high-purity HD regime (Kc>4) by producing a sample via cryogenic distillation and performing a cross calibration for three systems: Quadrupole mass spectrometry, Raman spectroscopy, and infrared spectroscopy. Therefore, we can also demonstrate that additional calibration points are indispensable in order to improve the systematic uncertainties below the 5% level, and a simple extrapolation from a calibration of Kc < 4 to Kc > 4 will result in a trueness and accuracy exceeding this 5% level.