ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Nicolae Bidica, Anisia Bornea, Nicolae Sofilca, Ciprian Bucur, Marian Curuia
Fusion Science and Technology | Volume 76 | Number 3 | April 2020 | Pages 275-283
Technical Paper | doi.org/10.1080/15361055.2019.1705751
Articles are hosted by Taylor and Francis Online.
The control of tritium permeation through the structural materials of fusion reactors is an important safety issue, and because both deuterium and tritium are fuel constituents, the effects of isotopes have to be taken into account in permeation assessments. Although various mathematical models and experiments regarding hydrogen isotope permeation through metals have been carried out so far, there are still unresolved issues like those regarding synergistic isotope effects (by which an isotope influences the permeation of another isotope when multiple isotopes permeate simultaneously). Some controversial issues of other previous steady-state work have led us to set up a non-steady-state model for multi-isotope permeation in a surface-limited regime (SLR). The mathematical model and the results obtained by numerical simulation (which are published elsewhere) have shown that in contrast to some previous steady-state approaches, the permeation flux of a heavier isotope is not reduced by the presence of a lighter one; to the contrary, it is increased. This theoretical prediction has to be verified against experimental data, and this is the goal of future work. But, the differences between multi-isotope and single-isotope permeations are not so large, and some deviations of the experimental model from the assumptions of the theoretical model (like SLR, constant partial pressures in retentate, or vacuum on the permeate side) could affect the theoretical predictions or could lead to misinterpretations of the experimental data. Therefore, these kinds of deviations and their effects have been analyzed within this work with the aim of implementing, in the experimental model, appropriate measures to mitigate these undesirable effects. The conceptual design of the proposed experimental setup and a procedure for setting some key operating parameters (like flow rates and pressure of the purge gas) are also presented.