ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Jisoo Kim, S. Park, H. S. Kang, K. J. Jung, K. Y. Kim, S. P. Yim, S. B. Kim, H. J. Ahn, C. W. Park, S. N. Lee, M. H. Chang, Hongsuk Chung
Fusion Science and Technology | Volume 76 | Number 3 | April 2020 | Pages 267-274
Technical Paper | doi.org/10.1080/15361055.2019.1705750
Articles are hosted by Taylor and Francis Online.
Korea has 26 nuclear power plants (NPPs). Out of these 26 plants, 4 are Canada Deuterium Uranium (CANDU) reactors at the Wolsong nuclear power site. In CANDU reactors, deuterium oxide is used as a moderator/coolant, and tritium is produced whenever a deuterium oxide nucleus captures a neutron. The Wolsong Tritium Removal Facility was designed to remove tritium generated in CANDU reactors. We are introducing tritium environmental protection not only at the Wolsong NPP but also at the High-Flux Advanced Neutron Application Reactor (HANARO) and in high-temperature gas-cooled reactors (HTGRs). We present a tritium behavior analysis code and assess the concentration of tritium in combustible dry active waste. Advanced techniques are introduced to transfer tritium from tritiated water to the gaseous phase. In addition, research on the nuclear fusion tritium storage and delivery system, which is part of the fuel cycle, has been carried out. In this paper, we present the recent progress in the effort to develop tritium systems at the Korea Atomic Energy Research Institute.