ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
P. J. Foster, Z. J. Trotter, S. A. Schaufler, J. L. Clark, J. E. Klein
Fusion Science and Technology | Volume 76 | Number 3 | April 2020 | Pages 262-266
Technical Paper | doi.org/10.1080/15361055.2019.1705749
Articles are hosted by Taylor and Francis Online.
Savannah River Tritium Enterprise (SRTE) has used LaNi4.25Al0.75 (LANA75) hydride beds to store hydrogen isotopes for over two decades. A benefit of using LANA75 is that the 3He generated from tritium decay is retained in the hydride material, allowing the hydride beds to deliver high-purity product gas. A disadvantage is that the 3He accumulates in the LANA75 material over time, which forms a heel that cannot be removed under normal operating conditions. The heel traps hydrogen in the bed, slowly reducing the operational capacity of the bed as the heel grows. Eventually, the 3He begins to release from the material, preventing the delivery of high-purity product.
The hydride beds are replaced when (1) operational capacity is reduced such that it is impactive to routine operations and/or (2) product purity is not maintained due to 3He release. Prior to replacing and disposing of the beds, it is necessary to isotopically exchange the gas on the bed to recover as much tritium as possible. Isotopic exchange involves repeatedly absorbing deuterium onto the bed and desorbing hydrogen isotopes from the bed until a predetermined criterion has been met. The isotopic exchange process represents a significant additional load on routine operations both in time and in the amount of waste gas that requires further processing.
A set of beds was recently prepared for replacement. The isotopic exchange method used by SRTE is presented, along with results of the most recent isotopic exchange. Lessons learned during the recent isotopic exchange process led to modifications that reduce isotopic exchange duration and corresponding waste gas produced while increasing the amount of tritium recovered.