ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Rodrigo Antunes, Laëtitia Frances, Marco Incelli, Alessia Santucci
Fusion Science and Technology | Volume 76 | Number 3 | April 2020 | Pages 257-261
Technical Paper | doi.org/10.1080/15361055.2019.1705748
Articles are hosted by Taylor and Francis Online.
One of the reference technologies for the fuel cycle of fusion machines is Pd/Ag membranes. This technology is proposed to be implemented in tritium recovery systems because of their exclusive selectivity toward molecular hydrogen isotopes (Q = H, D, T). To perform scaling-up studies for the Tritium Extraction and Removal System of the European DEMOnstration fusion power reactor (DEMO) with a solid blanket, a one-dimensional simulation code was recently developed and successfully validated with experiments. This code relies on different operational (e.g., feed pressure and temperature), geometrical (e.g., permeator length), and membrane-intrinsic (e.g., Q2 permeability) parameters given as input. The main outcome is the Q2 permeation efficiency, defined as the Q2 permeate–to–feed flow ratio. Because of the low concentrations of Q2 expected at the He stream purging the solid blanket, the surface effects are expected to be important, decreasing the separation efficiency of the Pd/Ag permeators. In this paper the role of surface effects on the permeation efficiency is studied for a DEMO-relevant scenario (feeding mixture: HT/H2/He). Moreover, a sensitivity study is also given demonstrating the high impact of the permeation area, temperature, and feed pressure on the permeation efficiency of HT.