ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Anthony Busigin
Fusion Science and Technology | Volume 76 | Number 3 | April 2020 | Pages 252-256
Technical Paper | doi.org/10.1080/15361055.2019.1705747
Articles are hosted by Taylor and Francis Online.
The rigorous steady-state equilibrium stage Tritium Wet Scrubber Column model has been developed. The model includes the six water isotopologues H2O, HDO, HTO, D2O, DTO, and T2O; heat balance; and packing pressure drop. Heat balance is particularly important in wet scrubber calculations due to evaporative cooling of air with less than 100% relative humidity. Evaporative cooling is generally beneficial, but freezing is possible with very cold dry air, making it important to understand operating limits. The pros and cons of precooling and saturation of the airstream are discussed. The Tritium Wet Scrubber Column model has been applied to scrubbing airstreams containing tritiated light water vapor and for tritiated heavy water vapor in CANDU® heavy water applications. Deuterium and tritium are recovered at slightly different efficiencies, and because of differences in the latent heat of vaporization for H2O and D2O, liquid and vapor compositions affect the column heat balance. Case studies are presented for tritiated light water vapor air detritiation and also for tritiated heavy water vapor air detritiation to provide guidance for design. Further, practical aspects of the wet scrubber column construction and operation are discussed.