ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Mingzhong Zhao, Moeko Nakata, Fei Sun, Yuji Hatano, Yoji Someya, Kenji Tobita, Yasuhisa Oya
Fusion Science and Technology | Volume 76 | Number 3 | April 2020 | Pages 246-251
Technical Paper | doi.org/10.1080/15361055.2019.1705727
Articles are hosted by Taylor and Francis Online.
The deuterium (D) permeation behavior for 1 displacement per atom Fe2+ damaged tungsten (W) was studied by the gas-driven permeation method and compared with undamaged W. The results of thermal desorption spectroscopy showed that dislocation loops and voids were formed in damaged W. It was found that the D permeation behavior in W was affected by irradiation defects. The effective diffusivity and permeability in the damaged W were lower than that in undamaged W. However, the difference in effective diffusivity and permeability between the undamaged sample and the damaged sample was reduced with increasing the heating temperature. Under 965 K, which was enough for D detrapping from voids, the permeability for damaged W was consistent with that for undamaged W.