ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Yannick Nicolas Hörstensmeyer, Silvano Tosti, Alessia Santucci, Giacomo Bruni
Fusion Science and Technology | Volume 76 | Number 3 | April 2020 | Pages 232-237
Technical Paper | doi.org/10.1080/15361055.2019.1705690
Articles are hosted by Taylor and Francis Online.
Palladium alloy permeators are foreseen for the retrieval of hydrogen in the fusion fuel cycle of the European DEMO power plant. Driven by a pressure gradient, unburned fuel permeates through a thin-walled metallic membrane within the permeator while other gases cannot pass this barrier. With a theoretically unlimited selectivity with regard to nonhydrogenic species, a very high proportion of unburned fuel can be recovered in a continuous process from the exhaust gas and reused after a very short time. A potential candidate for the design of such a permeator consists of a tube (l = 500 mm, d = 10 mm) with a 125-μm-thick, self-supporting membrane made of a palladium-silver alloy all combined in the shape of a so-called finger-type design. A two-stage process then connects several of these permeators in parallel and in series to match the required throughput of DEMO during plasma operation at a given degree of separation. As the first design point in the scope of the current preconceptual design phase, a model was developed using the commercial software ASPEN Custom Modeler to estimate important parameters such as the tritium inventory and the scale of the permeator unit. How the hydrogen pressure profile is calculated over the length of a permeator using the Sieverts’ Law and the Finite Volume Method is thoroughly described. As a result, the integral performance of the combined permeators is presented as well as all important boundary conditions and assumptions that led to it. For the current DEMO baseline scenario, the total number of permeators of the abovementioned shape is found to be about 50.