ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
S. Welte, M. Sturm, D. Hillesheimer, L. T. Le, S. Schäfer, E. Fanghänel, F. Priester, A. Marsteller
Fusion Science and Technology | Volume 76 | Number 3 | April 2020 | Pages 227-231
Technical Paper | doi.org/10.1080/15361055.2019.1705681
Articles are hosted by Taylor and Francis Online.
The main task of the Tritium Laboratory Karlsruhe (TLK) in 2018 was the commissioning and First Tritium (FT) operation of the windowless gaseous tritium source (WGTS) of the Karlsruhe Tritium Neutrino (KATRIN) experiment. It was paramount to enable the FT measurement run of the KATRIN experiment, to yield first scientific results with the complete KATRIN beamline.
The aim of KATRIN is to determine the mass of the electron-antineutrino by precise spectroscopy of the tritium β-spectrum close to its maximum energy of 18.6 keV. KATRIN uses an ultraluminous source (WGTS) and a high-resolution electrostatic spectrometer. While the inner loop system of KATRIN has the task of providing stabilized tritium circulation with a throughput of 40 g·day−1 for the WGTS, the outer loop incorporates the entire TLK infrastructure for tritium cleanup, purification, and accountancy prior to reinjection of tritium into the inner loop.
For KATRIN’s FT run, ≈5 × 1013 Bq (2.3 × 10−2 mol) of tritium was provided in 3.2 mol of deuterium. In contrast to the high isotopic purity of >95% tritium necessary for future KATRIN operation, a concentration of 7 × 108 Bq·m−3 (resulting in 0.5% nominal source luminosity) had to be kept constant during the entire FT campaign. This required a processing scheme deviating from the later KATRIN outer loop processing procedure.
This paper describes the procedures used to supply the KATRIN inner loop with its FT gas. Furthermore, experience gained during operation of the different gas processing steps and tritium accountancy is presented.