ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Argonne research aims to improve nuclear fuel recycling and metal recovery
Servis
Scientists at Argonne National Laboratory are investigating a used nuclear fuel recycling technology that could lead to a scaled-down and more efficient approach to metal recovery, according to a recent news article from the lab. The research, led by Argonne radiochemist Anna Servis with funding from the Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-E), could have an impact beyond the nuclear fuel cycle and improve other high-value metal processing, such as rare earth recovery, according to Argonne.
The research: Servis’s work is being carried out under ARPA-E’s CURIE (Converting UNF Radioisotopes Into Energy) program. The specific project—Radioisotope Capture Intensification Using Rotating Packed Bed Contactors—started in 2023 and is scheduled to end in January 2026.
S. Welte, M. Sturm, D. Hillesheimer, L. T. Le, S. Schäfer, E. Fanghänel, F. Priester, A. Marsteller
Fusion Science and Technology | Volume 76 | Number 3 | April 2020 | Pages 227-231
Technical Paper | doi.org/10.1080/15361055.2019.1705681
Articles are hosted by Taylor and Francis Online.
The main task of the Tritium Laboratory Karlsruhe (TLK) in 2018 was the commissioning and First Tritium (FT) operation of the windowless gaseous tritium source (WGTS) of the Karlsruhe Tritium Neutrino (KATRIN) experiment. It was paramount to enable the FT measurement run of the KATRIN experiment, to yield first scientific results with the complete KATRIN beamline.
The aim of KATRIN is to determine the mass of the electron-antineutrino by precise spectroscopy of the tritium β-spectrum close to its maximum energy of 18.6 keV. KATRIN uses an ultraluminous source (WGTS) and a high-resolution electrostatic spectrometer. While the inner loop system of KATRIN has the task of providing stabilized tritium circulation with a throughput of 40 g·day−1 for the WGTS, the outer loop incorporates the entire TLK infrastructure for tritium cleanup, purification, and accountancy prior to reinjection of tritium into the inner loop.
For KATRIN’s FT run, ≈5 × 1013 Bq (2.3 × 10−2 mol) of tritium was provided in 3.2 mol of deuterium. In contrast to the high isotopic purity of >95% tritium necessary for future KATRIN operation, a concentration of 7 × 108 Bq·m−3 (resulting in 0.5% nominal source luminosity) had to be kept constant during the entire FT campaign. This required a processing scheme deviating from the later KATRIN outer loop processing procedure.
This paper describes the procedures used to supply the KATRIN inner loop with its FT gas. Furthermore, experience gained during operation of the different gas processing steps and tritium accountancy is presented.