ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Ontario eyes new nuclear development
A 1,300-acre site left undeveloped on the shores of Lake Ontario four decades ago could see new life as the home to a large nuclear facility.
S. Welte, M. Sturm, D. Hillesheimer, L. T. Le, S. Schäfer, E. Fanghänel, F. Priester, A. Marsteller
Fusion Science and Technology | Volume 76 | Number 3 | April 2020 | Pages 227-231
Technical Paper | doi.org/10.1080/15361055.2019.1705681
Articles are hosted by Taylor and Francis Online.
The main task of the Tritium Laboratory Karlsruhe (TLK) in 2018 was the commissioning and First Tritium (FT) operation of the windowless gaseous tritium source (WGTS) of the Karlsruhe Tritium Neutrino (KATRIN) experiment. It was paramount to enable the FT measurement run of the KATRIN experiment, to yield first scientific results with the complete KATRIN beamline.
The aim of KATRIN is to determine the mass of the electron-antineutrino by precise spectroscopy of the tritium β-spectrum close to its maximum energy of 18.6 keV. KATRIN uses an ultraluminous source (WGTS) and a high-resolution electrostatic spectrometer. While the inner loop system of KATRIN has the task of providing stabilized tritium circulation with a throughput of 40 g·day−1 for the WGTS, the outer loop incorporates the entire TLK infrastructure for tritium cleanup, purification, and accountancy prior to reinjection of tritium into the inner loop.
For KATRIN’s FT run, ≈5 × 1013 Bq (2.3 × 10−2 mol) of tritium was provided in 3.2 mol of deuterium. In contrast to the high isotopic purity of >95% tritium necessary for future KATRIN operation, a concentration of 7 × 108 Bq·m−3 (resulting in 0.5% nominal source luminosity) had to be kept constant during the entire FT campaign. This required a processing scheme deviating from the later KATRIN outer loop processing procedure.
This paper describes the procedures used to supply the KATRIN inner loop with its FT gas. Furthermore, experience gained during operation of the different gas processing steps and tritium accountancy is presented.