ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
S. Welte, M. Sturm, D. Hillesheimer, L. T. Le, S. Schäfer, E. Fanghänel, F. Priester, A. Marsteller
Fusion Science and Technology | Volume 76 | Number 3 | April 2020 | Pages 227-231
Technical Paper | doi.org/10.1080/15361055.2019.1705681
Articles are hosted by Taylor and Francis Online.
The main task of the Tritium Laboratory Karlsruhe (TLK) in 2018 was the commissioning and First Tritium (FT) operation of the windowless gaseous tritium source (WGTS) of the Karlsruhe Tritium Neutrino (KATRIN) experiment. It was paramount to enable the FT measurement run of the KATRIN experiment, to yield first scientific results with the complete KATRIN beamline.
The aim of KATRIN is to determine the mass of the electron-antineutrino by precise spectroscopy of the tritium β-spectrum close to its maximum energy of 18.6 keV. KATRIN uses an ultraluminous source (WGTS) and a high-resolution electrostatic spectrometer. While the inner loop system of KATRIN has the task of providing stabilized tritium circulation with a throughput of 40 g·day−1 for the WGTS, the outer loop incorporates the entire TLK infrastructure for tritium cleanup, purification, and accountancy prior to reinjection of tritium into the inner loop.
For KATRIN’s FT run, ≈5 × 1013 Bq (2.3 × 10−2 mol) of tritium was provided in 3.2 mol of deuterium. In contrast to the high isotopic purity of >95% tritium necessary for future KATRIN operation, a concentration of 7 × 108 Bq·m−3 (resulting in 0.5% nominal source luminosity) had to be kept constant during the entire FT campaign. This required a processing scheme deviating from the later KATRIN outer loop processing procedure.
This paper describes the procedures used to supply the KATRIN inner loop with its FT gas. Furthermore, experience gained during operation of the different gas processing steps and tritium accountancy is presented.