ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Ontario eyes new nuclear development
A 1,300-acre site left undeveloped on the shores of Lake Ontario four decades ago could see new life as the home to a large nuclear facility.
Michael McDonald, Armando Antoniazzi, Clive Morton
Fusion Science and Technology | Volume 76 | Number 3 | April 2020 | Pages 194-201
Technical Paper | doi.org/10.1080/15361055.2019.1704108
Articles are hosted by Taylor and Francis Online.
Several types of radiological respiratory protective equipment (RPE) are used in tritiated environments at nuclear facilities and nuclear power plants to protect workers in those environments. It is crucial that the level of protection the RPE provides is well understood. A tritium protection factor (PF) may be assigned to RPE. The PF is often defined as the ratio of the tritium concentration in the ambient air to the tritium concentration in the breathing air. Field observations at Canada Deuterium Uranium (CANDU) nuclear plants indicate that the in-use PFs are too conservative and do not represent actual internal uptakes following work in tritiated atmospheres. To improve radioactive work planning and work execution efficiency, more accurate tritium PFs are needed to cover the variety of personal radiological RPE currently in use. In order to test PFs of RPE, Kinectrics has designed, manufactured, and commissioned a tritium facility, referred to as the tritium exposure box (TEB), through support from the CANDU Owners Group. The TEB is a self-contained enclosure that permits the use of a full-sized mannequin with RPE for testing in a tritium oxide atmosphere. Tritium concentrations of up to 3.7 × 108 Bq/m3 may be achieved and maintained inside the TEB. The clean airflow to an air-supplied suit may range from 420 to 800 standard liters per minute. Following the successful commissioning of the TEB, Kinectrics has performed testing of an air-supplied plastic suit to determine the protection provided.