ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Andrey Ovcharov, Richard Szczepanski, Jacek Kosek, Nuno Pedrosa, Xiaofei Lu, Lorenzo Basili, Rosa Lo Frano, Donato Aquaro
Fusion Science and Technology | Volume 76 | Number 3 | April 2020 | Pages 179-190
Technical Paper | doi.org/10.1080/15361055.2019.1689891
Articles are hosted by Taylor and Francis Online.
Operation of the fuel cycle of a thermonuclear fusion reactor naturally leads to accumulation of surplus protium, but in some cases it can also lead to accumulation of surplus deuterium. Both surplus protium and deuterium have to be separated, detritiated, and discharged to the environment, normally passing a final detritiation stage based on either the liquid phase catalytic exchange or water distillation process. The concept of a multicolumn cryogenic distillation (CD) system capable of discharging a time-varying surplus of deuterium is presented in this paper. A model of a CD column based on a UV (internal energy U – volume V) flash formulation and equation of state (EOS) thermodynamic model for hydrogen isotopologue mixtures is also presented at the principal step to a comprehensive model of the isotope separation system. Although fundamental for constant volume systems, the UV formulation of the thermodynamic state has not been widely used in transient simulations; in particular, for distillation dynamics modeling, other approaches are much more common. At the same time, in helium cryogenics the UV formulation has gained wide usage in large-scale dynamic simulations. It is known from the literature that a UV formulation of the distillation problem is very challenging for a numerically stable implementation. To cope with this situation, we present our findings on the sources of numerical instabilities and approaches.