ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Andrey Ovcharov, Richard Szczepanski, Jacek Kosek, Nuno Pedrosa, Xiaofei Lu, Lorenzo Basili, Rosa Lo Frano, Donato Aquaro
Fusion Science and Technology | Volume 76 | Number 3 | April 2020 | Pages 179-190
Technical Paper | doi.org/10.1080/15361055.2019.1689891
Articles are hosted by Taylor and Francis Online.
Operation of the fuel cycle of a thermonuclear fusion reactor naturally leads to accumulation of surplus protium, but in some cases it can also lead to accumulation of surplus deuterium. Both surplus protium and deuterium have to be separated, detritiated, and discharged to the environment, normally passing a final detritiation stage based on either the liquid phase catalytic exchange or water distillation process. The concept of a multicolumn cryogenic distillation (CD) system capable of discharging a time-varying surplus of deuterium is presented in this paper. A model of a CD column based on a UV (internal energy U – volume V) flash formulation and equation of state (EOS) thermodynamic model for hydrogen isotopologue mixtures is also presented at the principal step to a comprehensive model of the isotope separation system. Although fundamental for constant volume systems, the UV formulation of the thermodynamic state has not been widely used in transient simulations; in particular, for distillation dynamics modeling, other approaches are much more common. At the same time, in helium cryogenics the UV formulation has gained wide usage in large-scale dynamic simulations. It is known from the literature that a UV formulation of the distillation problem is very challenging for a numerically stable implementation. To cope with this situation, we present our findings on the sources of numerical instabilities and approaches.