ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Magnus Schlösser, KATRIN Collaboration
Fusion Science and Technology | Volume 76 | Number 3 | April 2020 | Pages 170-178
Technical Paper | doi.org/10.1080/15361055.2019.1668253
Articles are hosted by Taylor and Francis Online.
The Karlsruhe Tritium Neutrino Experiment (KATRIN) aims for a model-independent measurement of the neutrino mass scale with a sensitivity of 0.2 eV/c2 (90% confidence limit). This is made possible by using an ultrastable, high-luminosity windowless gaseous tritium source providing 1011 beta decays per second and a high-resolution integrating spectrometer with a resolution of <1 eV. Over the past years, the system was installed at the Tritium Laboratory Karlsruhe and commissioned in various stages while demonstrating the outstanding performance of the magnetic guiding, electron transmission, and stability of individual subsystems. In 2018, the KATRIN beamline was operated with traces of tritium for the very first time. In this campaign, first beta decay spectra could be recorded. This was essential to validate the physics model and the fitting methods of the KATRIN analysis. Furthermore, in the campaign it was demonstrated that the global KATRIN stability of 0.1% in this configuration was successfully reached. Based on these results—as well as those from a subsequent systematic calibration campaign—KATRIN is now performing neutrino mass measurement runs at nominal tritium purity.