ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Argonne research aims to improve nuclear fuel recycling and metal recovery
Servis
Scientists at Argonne National Laboratory are investigating a used nuclear fuel recycling technology that could lead to a scaled-down and more efficient approach to metal recovery, according to a recent news article from the lab. The research, led by Argonne radiochemist Anna Servis with funding from the Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-E), could have an impact beyond the nuclear fuel cycle and improve other high-value metal processing, such as rare earth recovery, according to Argonne.
The research: Servis’s work is being carried out under ARPA-E’s CURIE (Converting UNF Radioisotopes Into Energy) program. The specific project—Radioisotope Capture Intensification Using Rotating Packed Bed Contactors—started in 2023 and is scheduled to end in January 2026.
Magnus Schlösser, KATRIN Collaboration
Fusion Science and Technology | Volume 76 | Number 3 | April 2020 | Pages 170-178
Technical Paper | doi.org/10.1080/15361055.2019.1668253
Articles are hosted by Taylor and Francis Online.
The Karlsruhe Tritium Neutrino Experiment (KATRIN) aims for a model-independent measurement of the neutrino mass scale with a sensitivity of 0.2 eV/c2 (90% confidence limit). This is made possible by using an ultrastable, high-luminosity windowless gaseous tritium source providing 1011 beta decays per second and a high-resolution integrating spectrometer with a resolution of <1 eV. Over the past years, the system was installed at the Tritium Laboratory Karlsruhe and commissioned in various stages while demonstrating the outstanding performance of the magnetic guiding, electron transmission, and stability of individual subsystems. In 2018, the KATRIN beamline was operated with traces of tritium for the very first time. In this campaign, first beta decay spectra could be recorded. This was essential to validate the physics model and the fitting methods of the KATRIN analysis. Furthermore, in the campaign it was demonstrated that the global KATRIN stability of 0.1% in this configuration was successfully reached. Based on these results—as well as those from a subsequent systematic calibration campaign—KATRIN is now performing neutrino mass measurement runs at nominal tritium purity.