ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Masanori Hara, Miki Shoji, Tsukasa Aso
Fusion Science and Technology | Volume 76 | Number 3 | April 2020 | Pages 163-169
Technical Paper | doi.org/10.1080/15361055.2019.1661720
Articles are hosted by Taylor and Francis Online.
Liquid scintillation counters (LSCs) have been widely used for low-level tritium measurements. To obtain an accurate tritium activity using a LSC, a quenching correction is required. The quenching occurs from interruptions to the scintillation process (chemical quenching) and by absorption of scintillation photons by colored substances (color quenching). There is no common method for the correction of color quenching. Here, two-dimensional (2-D) scintillation spectra were measured with a conventional LSC connected to an external multichannel analyzer. The LSC had two photomultiplier tubes (PMTs). A 2-D spectrum was constructed from pulse heights from both PMTs. In a less-quenching cocktail, the 2-D scintillation spectra extended along a 45-deg line. However, the shape of the spectrum broadened with increasing color quenching and thus gave information about the color quenching. The effect of color quenching was qualitatively less significant in the relationship between the tritium counting efficiency and the quenching index parameter.