ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
DOE seeks proposals for AI data centers at Paducah
The Department of Energy’s Office of Environmental Management has issued a request for offer (RFO) seeking proposals from U.S. companies to build and power AI data centers on the DOE’s Paducah Site in Kentucky. Companies are being sought to potentially enter into one or more long-term leasing agreements at the site that would be solely funded by the applicants.
Masanori Hara, Miki Shoji, Tsukasa Aso
Fusion Science and Technology | Volume 76 | Number 3 | April 2020 | Pages 163-169
Technical Paper | doi.org/10.1080/15361055.2019.1661720
Articles are hosted by Taylor and Francis Online.
Liquid scintillation counters (LSCs) have been widely used for low-level tritium measurements. To obtain an accurate tritium activity using a LSC, a quenching correction is required. The quenching occurs from interruptions to the scintillation process (chemical quenching) and by absorption of scintillation photons by colored substances (color quenching). There is no common method for the correction of color quenching. Here, two-dimensional (2-D) scintillation spectra were measured with a conventional LSC connected to an external multichannel analyzer. The LSC had two photomultiplier tubes (PMTs). A 2-D spectrum was constructed from pulse heights from both PMTs. In a less-quenching cocktail, the 2-D scintillation spectra extended along a 45-deg line. However, the shape of the spectrum broadened with increasing color quenching and thus gave information about the color quenching. The effect of color quenching was qualitatively less significant in the relationship between the tritium counting efficiency and the quenching index parameter.