ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Renato Vinicius A. Marques, Marcia Saturnino, Felipe Martins, Carlos Eduardo Velasquez Cabrera, Claubia Pereira Bezerra Lima, Maria Auxiliadora Fortini Veloso, Antonella Lombardi Costa
Fusion Science and Technology | Volume 76 | Number 2 | February 2020 | Pages 145-152
Technical Paper | doi.org/10.1080/15361055.2019.1704594
Articles are hosted by Taylor and Francis Online.
Lead-bismuth eutectic is used as a coolant for the fusion-fission hybrid system (FFS) based on a tokamak that enhances the transmutation of transuranic nuclides. However, this coolant does not produce enough tritium to supply the fusion reactions of the system. Therefore, the aim of this work is to evaluate the insertion of tritium breeder layers (TBLs) on the FFS to enhance tritium production. The analyzed materials for tritium production were beryllium, boron, and lithium alloys. The results indicate the most suitable material for tritium production depends on the TBL location. The results also indicate that there is a strong dependency on the position of the TBL affecting the neutronic parameters and nuclide transmutation such as criticality and fuel depletion. The reaction rates for tritium production and fuel composition after a fuel burnup were analyzed using the Monte Carlo N-Particle 5 (MCNP5) and MONTEBURNS codes.