ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Renato Vinicius A. Marques, Marcia Saturnino, Felipe Martins, Carlos Eduardo Velasquez Cabrera, Claubia Pereira Bezerra Lima, Maria Auxiliadora Fortini Veloso, Antonella Lombardi Costa
Fusion Science and Technology | Volume 76 | Number 2 | February 2020 | Pages 145-152
Technical Paper | doi.org/10.1080/15361055.2019.1704594
Articles are hosted by Taylor and Francis Online.
Lead-bismuth eutectic is used as a coolant for the fusion-fission hybrid system (FFS) based on a tokamak that enhances the transmutation of transuranic nuclides. However, this coolant does not produce enough tritium to supply the fusion reactions of the system. Therefore, the aim of this work is to evaluate the insertion of tritium breeder layers (TBLs) on the FFS to enhance tritium production. The analyzed materials for tritium production were beryllium, boron, and lithium alloys. The results indicate the most suitable material for tritium production depends on the TBL location. The results also indicate that there is a strong dependency on the position of the TBL affecting the neutronic parameters and nuclide transmutation such as criticality and fuel depletion. The reaction rates for tritium production and fuel composition after a fuel burnup were analyzed using the Monte Carlo N-Particle 5 (MCNP5) and MONTEBURNS codes.