ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
ANS continues to expand its certificate offerings
It’s almost been a full year since the American Nuclear Society held its inaugural section of Nuclear 101, a comprehensive certificate course on the basics of the nuclear field. Offered at the 2024 ANS Winter Conference and Expo, that first sold-out course marked a massive milestone in the Society’s expanding work in professional development and certification.
Yuki Edao, Yasunori Iwai
Fusion Science and Technology | Volume 76 | Number 2 | February 2020 | Pages 135-140
Technical Paper | doi.org/10.1080/15361055.2019.1704572
Articles are hosted by Taylor and Francis Online.
A passive catalytic reactor without heating is required to enhance the safety of a fusion facility. A precious metal catalyst without heating is not suitable to oxidize tritium under conditions of low hydrogen concentration and room temperature. In addition, under a moisture condition, tritium oxidation of a precious metal catalyst drops drastically since moisture adsorbs active sites on the surface of the catalyst. Hence, as a method of tritium oxidation under a moisture condition at room temperature, we have focused on bacterial oxidation of tritium by hydrogen-oxidizing bacteria in natural soil to realize a passive reactor. In this study, we investigated the effect of hydrogen concentration on tritium oxidation by hydrogen-oxidizing bacteria in natural soils to understand the characteristic of tritium oxidation by hydrogen-oxidizing bacteria from the viewpoint of engineering. In our experiment, efficiency of tritium oxidation by a natural soil was obtained at room temperature in the range of hydrogen concentration from 0.5 to 10 000 parts per million (ppm) under a moisture condition. The efficiency of tritium oxidation was the highest at a hydrogen concentration of 0.5 ppm, which equals the value of the hydrogen concentration in air. Our results show that hydrogen-oxidizing bacteria could efficiently oxidize tritium with a low concentration of hydrogen, at room temperature, with high moisture. This showed a tendency opposite to a metal catalyst. A bioreactor using hydrogen-oxidizing bacteria complemented a conventional catalytic reactor using a precious metal catalyst since hydrogen-oxidizing bacteria could oxidize tritium efficiently with a low concentration of hydrogen, at room temperature, with high moisture.