ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Zhanlei Wang, Kaigui Zhu, Wei Wang, Yongchu Rao, Xiaoqiu Ye, Yakun Guo, Jing Yan, Chang An Chen
Fusion Science and Technology | Volume 76 | Number 2 | February 2020 | Pages 102-109
Technical Paper | doi.org/10.1080/15361055.2019.1693192
Articles are hosted by Taylor and Francis Online.
Hydrogen isotope behavior in tungsten coated on reduced activation ferritic/martensitic (RAFM) steels such as China low activation martensitic (CLAM) steel has attracted more attention in the fusion engineering research community. This paper is mainly devoted to the investigation of the effect of tungsten coating on deuterium permeation and retention behavior in RAFM steels. The permeability and diffusion coefficients of CLAM, W-CLAM, and W were determined by gas-driven permeation (GDP) tests followed by thermal desorption spectroscopy to measure deuterium retention. It was found that the observed deuterium permeability and diffusivity of the composite W-CLAM specimen was reduced to about ~60% of the pure CLAM steel, whereas deuterium retention increased, evidently owing to the W coating on the surface that caused the slower release of D into the environment and increased of the effective surface area. In addition, a key finding was that the lath martensite–coarsened and more precipitate phase was found, which may be due to the migration of lath interface during the GDP test.