ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Argonne research aims to improve nuclear fuel recycling and metal recovery
Servis
Scientists at Argonne National Laboratory are investigating a used nuclear fuel recycling technology that could lead to a scaled-down and more efficient approach to metal recovery, according to a recent news article from the lab. The research, led by Argonne radiochemist Anna Servis with funding from the Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-E), could have an impact beyond the nuclear fuel cycle and improve other high-value metal processing, such as rare earth recovery, according to Argonne.
The research: Servis’s work is being carried out under ARPA-E’s CURIE (Converting UNF Radioisotopes Into Energy) program. The specific project—Radioisotope Capture Intensification Using Rotating Packed Bed Contactors—started in 2023 and is scheduled to end in January 2026.
Bin Chen, Jiangang Li, Yanlan Hu, Teng Wang, Chao Zhou
Fusion Science and Technology | Volume 76 | Number 2 | February 2020 | Pages 95-101
Technical Paper | doi.org/10.1080/15361055.2019.1690927
Articles are hosted by Taylor and Francis Online.
High-temperature superconductor (HTS) current leads are important components of the EAST and CFETR tokamaks, which are responsible for operating the high parametric current. HTS current leads are made of Bi-2223/Ag-Au alloy tapes, which have the characteristics of slow quench propagation speed and weak quench signal. Traditional thermometers are easily damaged by the high voltage from the current leads, and the terminal voltage signal cannot reflect the hot spot changes of current leads in real time. In this paper, a novel quench detection method based on optical frequency domain reflection technology is proposed. Temperature variations of HTS can be obtained in real time by demodulating the Rayleigh scattered spectrum from the distributed optical fiber attached to the surface of HTS stacks. This paper describes a quenching experiment for one pair of 1-kA small current leads. The external thermal disturbance is increased to explore the quench propagation of HTS current leads under the condition of a self-field, 77 to 80 K air and conduction combined cooling method. From the experimental results, the temperature distribution map of the whole HTS lead is obtained. Compared with the quench voltage, the spectral shift of the fiber appeared to be about 2 s ahead, and the hot spot position can be located with 1-cm accuracy.