ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Bin Chen, Jiangang Li, Yanlan Hu, Teng Wang, Chao Zhou
Fusion Science and Technology | Volume 76 | Number 2 | February 2020 | Pages 95-101
Technical Paper | doi.org/10.1080/15361055.2019.1690927
Articles are hosted by Taylor and Francis Online.
High-temperature superconductor (HTS) current leads are important components of the EAST and CFETR tokamaks, which are responsible for operating the high parametric current. HTS current leads are made of Bi-2223/Ag-Au alloy tapes, which have the characteristics of slow quench propagation speed and weak quench signal. Traditional thermometers are easily damaged by the high voltage from the current leads, and the terminal voltage signal cannot reflect the hot spot changes of current leads in real time. In this paper, a novel quench detection method based on optical frequency domain reflection technology is proposed. Temperature variations of HTS can be obtained in real time by demodulating the Rayleigh scattered spectrum from the distributed optical fiber attached to the surface of HTS stacks. This paper describes a quenching experiment for one pair of 1-kA small current leads. The external thermal disturbance is increased to explore the quench propagation of HTS current leads under the condition of a self-field, 77 to 80 K air and conduction combined cooling method. From the experimental results, the temperature distribution map of the whole HTS lead is obtained. Compared with the quench voltage, the spectral shift of the fiber appeared to be about 2 s ahead, and the hot spot position can be located with 1-cm accuracy.